The answer should be B :)
Answer:
2f
Explanation:
The formula for the object - image relationship of thin lens is given as;
1/s + 1/s' = 1/f
Where;
s is object distance from lens
s' is the image distance from the lens
f is the focal length of the lens
Total distance of the object and image from the lens is given as;
d = s + s'
We earlier said that; 1/s + 1/s' = 1/f
Making s' the subject, we have;
s' = sf/(s - f)
Since d = s + s'
Thus;
d = s + (sf/(s - f))
Expanding this, we have;
d = s²/(s - f)
The derivative of this with respect to d gives;
d(d(s))/ds = (2s/(s - f)) - s²/(s - f)²
Equating to zero, we have;
(2s/(s - f)) - s²/(s - f)² = 0
(2s/(s - f)) = s²/(s - f)²
Thus;
2s = s²/(s - f)
s² = 2s(s - f)
s² = 2s² - 2sf
2s² - s² = 2sf
s² = 2sf
s = 2f
Beats.
When two sound waves of different frequency approach your ear, the alternating constructive and destructive interference causes the sound to be alternatively soft and loud - a phenomenon which is called "beating" or producing beats. The beat frequency is equal to the absolute value of the difference in frequency of the two waves.
Answer:
E=252J
Explanation:
The total mechanical energy of an object or system is given by:
E mech=K+U
Where K is the kinetic energy of the object and U is the potential energy of the object. The carriage, sitting motionless at the top of the hill, has only potential energy in the form of gravitational potential energy.
Gravitational potential energy is given by:
Ug=mgh
Where m is the mass of the object, g is the gravitational acceleration constant, and h is the height of the object above some specific reference point, in this case the ground 21 m below.
The weight of a stationary object at the surface of the earth is equal to the force of gravity acting on the object.
W=→Fg=mg
We are given that the carriage weighs 12 N, therefore mg=12N.
Ug=12N⋅21m
⇒Ug=252Nm=252J
Hope it helped, God bless you!