Answer:
-4.71 m/s
Explanation:
Given:
y₀ = 1.13 m
y = 0 m
v₀ = 0 m/s
a = -9.8 m/s²
Find: v
v² = v₀² + 2a (y − y₀)
v² = (0 m/s)² + 2(-9.8 m/s²) (0 m − 1.13 m)
v = -4.71 m/s
An electrons transferred and compound forms
Answer:

Explanation:
First, we calculate the work done by this force after the box traveled 14 m, which is given by:
![W=\int\limits^{x_f}_{x_0} {F(x)} \, dx \\W=\int\limits^{14}_{0} ({18N-0.530\frac{N}{m}x}) \, dx\\W=[(18N)x-(0.530\frac{N}{m})\frac{x^2}{2}]^{14}_{0}\\W=(18N)14m-(0.530\frac{N}{m})\frac{(14m)^2}{2}-(18N)0+(0.530\frac{N}{m})\frac{0^2}{2}\\W=252N\cdot m-52N\cdot m\\W=200N\cdot m](https://tex.z-dn.net/?f=W%3D%5Cint%5Climits%5E%7Bx_f%7D_%7Bx_0%7D%20%7BF%28x%29%7D%20%5C%2C%20dx%20%5C%5CW%3D%5Cint%5Climits%5E%7B14%7D_%7B0%7D%20%28%7B18N-0.530%5Cfrac%7BN%7D%7Bm%7Dx%7D%29%20%5C%2C%20dx%5C%5CW%3D%5B%2818N%29x-%280.530%5Cfrac%7BN%7D%7Bm%7D%29%5Cfrac%7Bx%5E2%7D%7B2%7D%5D%5E%7B14%7D_%7B0%7D%5C%5CW%3D%2818N%2914m-%280.530%5Cfrac%7BN%7D%7Bm%7D%29%5Cfrac%7B%2814m%29%5E2%7D%7B2%7D-%2818N%290%2B%280.530%5Cfrac%7BN%7D%7Bm%7D%29%5Cfrac%7B0%5E2%7D%7B2%7D%5C%5CW%3D252N%5Ccdot%20m-52N%5Ccdot%20m%5C%5CW%3D200N%5Ccdot%20m)
Since we have a frictionless surface, according to the the work–energy principle, the work done by all forces acting on a particle equals the change in the kinetic energy of the particle, that is:

The box is initially at rest, so
. Solving for
:

Answer:
B. 17,705.1 J
Explanation:
The hear released when the mercury condenses into a liquid is given by:

where
m = 0.06 kg is the mass of the mercury
is the latent heat of vaporization
For mercury, the latent heat of vaporization is
, so the heat released during the process is:

So, the closest option is
B. 17,705.1 J
Answer:
<h2> 27m/s</h2>
Explanation:
Given data
initital velocity u=15m/s
deceleration a=3m/s^2
time t= 4 seconds
final velocity v= ?
Applying the expression
v=u+at------1
substituting our data into the expression we have
v=15+3*4
v=15+12
v=27m/s
The velocity after 4 seconds is 27m/s