1) 5.79 s
2) 98.4 ft/s
Explanation:
1)
The motion of the car is a uniformly accelerated motion (it means it travels with constant acceleration), so we can find the time it takes for the car to stop by using the following suvat equation:

where
s is the distance travelled
v is the final velocity
t is the time
a is the acceleration of the car
In this problem we have:
s = 285 ft is the distance travelled
is the acceleration of the car (negative since the car is slowing down)
v = 0 ft/s is the final velocity of the car, since it comes to a stop
Solving for t, we find:

2)
The initial speed of the car can be found by using another suvat equation, namely:

where
v is the final speed
u is the initial speed
a is the acceleration
t is the time
In this problem, we have:
v = 0 is the final speed of the car
is the acceleration of the car (negative since the car is slowing down)
t = 5.79 s is the total time of motion (found in part 1)
Therefore, the initial speed of the car is:

Relaxation occurs when stimulation of the nerve stops. Calcium is then pumped back into the sarcoplasmic reticulum breaking the link between actin and myosin. Actin and myosin return to their unbound state causing the muscle to relax.
The answer is b) the total amount of energy for a system stays the same.
Answer:

Explanation:
momentum = mass * velocity
= 20kg * 3m/s
= 60kgm/s