Answer: a) 274.34 nm; b) 1.74 eV c) 1.74 V
Explanation: In order to solve this problem we have to consider the energy balance for the photoelectric effect on tungsten:
h*ν = Ek+W ; where h is the Planck constant, ek the kinetic energy of electrons and W the work funcion of the metal catode.
In order to calculate the cutoff wavelength we have to consider that Ek=0
in this case h*ν=W
(h*c)/λ=4.52 eV
λ= (h*c)/4.52 eV
λ= (1240 eV*nm)/(4.52 eV)=274.34 nm
From this h*ν = Ek+W; we can calculate the kinetic energy for a radiation wavelength of 198 nm
then we have
(h*c)/(λ)-W= Ek
Ek=(1240 eV*nm)/(198 nm)-4.52 eV=1.74 eV
Finally, if we want to stop these electrons we have to applied a stop potental equal to 1.74 V . At this potential the photo-current drop to zero. This potential is lower to the catode, so this acts to slow down the ejected electrons from the catode.
Answer:
if this is on odyssey ware then i can edit my answer to help you
Explanation:
Answer:
A. 40N
B. 5m/s
Explanation:
A.
Impulse is equal to the area under the curve of a force vs. time graph. In this case, the area is in the shape of a triangle with base 8 (12-4=8) and perpendicular height 10:
<em>Area of a triangle = (1/2)bh</em>
A=(1/2)*8*10
=40
ANSWER: 40N
B.
<em>Impulse = mass * velocity</em>
40 = 8v
v = 5
ANSWER: 5m/s
Explanation:
An organ is made of several types of tissue and therefore several types of cells. For example, the heart contains muscle tissue that contracts to pump blood, fibrous tissue that makes up the heart valves, and special cells that maintain the rate and rhythm of heartbeats.
Sliding and Static.
Would be the right one here.