Answer : The enthalpy change of reaction is 206.9 kJ
Explanation :
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
The given final reaction is,

The intermediate balanced chemical reaction will be,
(1)

(2)

First we will reverse the reaction 1 and 2 then adding both the equation, we get :
(1)

(2)

The expression for final enthalpy is,



Therefore, the enthalpy change of reaction is 206.9 kJ
The new temperature (in °C) of the gas, given the data is –148.20 °C
<h3>Data obtained from the question </h3>
- Initial temperature (T₁) = 149.05 °C = 149.05 + 273 = 422.05 K
- Initial pressure (P₁) = 349.84 KPa
- Volume = constant
- New pressure (P₂) = 103.45 KPa
- New temperature (T₂) =?
<h3>How to determine the new temperature </h3>
The new temperature of the gas can be obtained by using the combined gas equation as illustrated below:
P₁V₁ / T₁ = P₂V₂ / T₂
Since the volume is constant, we have:
P₁ / T₁ = P₂ / T₂
349.84 / 422.05 = 103.45 / T₂
Cross multiply
349.84 × T₂ = 103.45 × 422.05
Divide both side by 349.84
T₂ = (103.45 × 422.05) / 349.84
T₂ = 124.80 K
Subtract 273 from 124.80 K to express in degree celsius
T₂ = 124.80 – 273
T₂ = –148.20 °C
Learn more about gas laws:
brainly.com/question/6844441
#SPJ1
Answer:
youre right i think its 1 and 5
because it cant be 2 or 3
Explanation:
I hope this answers your question(s). Have a good weekend!
Heterozygous means A capital P with a lowercase p. There are two purple flowers in the Punnett square with Pp out of 4 possible options. 2/4 is 1/2 which is 50%. So there is a 50% chance of a purple heterozygous flower.
Answer:
2.1 moles of water formed.
Explanation:
Given data:
Moles of water formed = ?
Moles of Ni(OH) = 4.20 mol
Solution:
Chemical equation:
2Ni(OH) → Ni₂O + H₂O
Now we will compare the moles of Ni(OH) with water.
Ni(OH) : H₂O
2 : 1
4.20 : 1/2×4.20 = 2.1 mol
2.1 moles of water formed.