Answer:
46g of sodium acetate.
Explanation:
The data is: <em>Precipitation from a supersaturated sodium acetate solution. The solution on the left was formed by dissolving 156g of the salt in 100 mL of water at 100°C and then slowly cooling it to 20°C. Because the solubility of sodium acetate in water at 20°C is 46g per 100mL of water, the solution is supersaturated. Addition of a sodium acetate crystal causes the excess solute to crystallize from solution.</em>
The third solution is the result of the equilibrium in the solution at 20°C. As the maximum quantity that water can dissolve of sodium acetate at this temperature is 46g per 100mL and the solution has 100mL <em>there are 46g of sodium acetate in solution. </em>The other sodium acetate precipitate because of decreasing of temperature.
I hope it helps!
The total amount of solute decreases.
In normal conditions, warm water does "pile up" in the" Western Pacific Ocean.
Answer:
- <u>1. Equation: 2x + 3 = 9x - 11</u>
<u></u>
- <u>2. Each row has 2 chairs</u>
Explanation:
The variable x represents the number of chairs in each row.
<u />
<u>1. She can form 2 rows of a given length with 3 chairs left over.</u>
Thus, she has:
number of rows number of chairs in chairs number of chairs
each row left over she has
2 x 3 2x + 3
<u>2. She can form 9 rows of the same length if she gets 11 more chairs.</u>
That means that she is short in 11 chairs to have 9x chairs, or that she has 11 less chairs than 9x chairs. Then she has:
<u>3. Equation:</u>
Then, number of chairs she has is 2x + 3 and, also, 9x - 11, which allows to set the equation:
<u>4. Solve the equation:</u>
Therefore, each row has 2 chairs, and she has 2x + 3 = 4 + 3 = 7 chairs.
Sodium Hydroxide (NaOH) is also known as lye which is a base (very high ph; Alkaline)
Now, in chemistry, equilibrium is what affects the reaction rate of a reaction. If they are in equilibrium, the concentrations of them will not change (both reactants and products).
Now, lets say that to synthesize a certain chemical, we need it to be in an acidic environment with HCL or some other acid as the catalyst for the reaction.
Well, if we were to add Sodium Hydroxide to this which is very alkaline, the ph would change greatly which affects the reaction rate. If we do not have enough energy to overcome the activation barrier, the reaction will not occur (atleast for a very long time).
However, a common mistake is thinking that a catalyst will affect the equilibrium. This is not true. The reaction will still take place but it will have a very slow reaction rate.
TLDR; Adding a catalyst (like NaOH or Sodium Hydroxide) will not change the equilibrium but instead change the reaction rate. The reaction can still occur, although it can take a very, very long time (like diamonds turning into graphite)