Answer:
Π = iMRT ½
Explanation:
111 g
= 0.033 mol
0.033 mol CaCl2
0.09632 kg solvent
= 0.0344 m
13.7 g x 1 mol C3H7OH
60.10 g
0.5 L
(0.0821 L.atm/K.mol) (300.15K
Answer:
b. 4/3
Explanation:
Given data
- Final pressure: P₂ = 3 P₁
- Final temperature: T₂ = 4 T₁
We can find by what factor will the volume of the sample change using the combined gas law.

Answer:
T₂ = 43.46 °C
Explanation:
Given that:
The heat of the formation of carbon dioxide = - 393.5 kJ/mol (Negative sign suggests heat loss)
It means that energy released when 1 mole of carbon undergoes combustion = 393.5 kJ = 393500 J
Heat gain by water = Heat lost by the reaction
Thus,
For water:
Mass of water = 5100 g
Specific heat of water = 4.18 J/g°C
T₁ = 25 °C
T₂ = ?
Q = 393500 J
So,
T₂ = 43.46 °C
Answer:
Explanation: Cellular respiration is the process that occurs in the mitochondria of organisms (animals and plants) to break down sugar in the presence of oxygen to release energy in the form of ATP. This process releases carbon dioxide and water as waste products.
The pressure inside the flask on heating it is given as 1.21 atm.
<u>Explanation:</u>
As per Guy Lussac's law, the pressure of any concealed volume of gas particles will be directly proportional to the temperature of the container of the gas particles.
So P ∝ T
To convert celsius to kelvin, add 273.15 to the temperature value in celsius
Since, here the initial temperature of the flask is given as 24°C, so in kelvin it will be 297.15 K. Similarly, the final temperature is said to be 104°C which will be equal to 377.15 K. Then the final pressure will be increased as there is increase in temperature. So, the final pressure inside the flask can be obtained as


So, the pressure inside the flask on heating it is given as 1.21 atm.