Answer:
0.4 moles of KOH is required to neutralize 0.4 moles of HNO3.
Explanation:
The equation of the reaction is
KOH(aq) + HNO3(aq) ------> KNO3(aq) + H2O(l)
This is a neutralization reaction. A neutralization reaction is a reaction between an acid and a base to form salt and water only.
Having written the balanced chemical reaction equation, we can now solve the prob!em stoichiometrically.
From the balanced reaction equation;
1 mole of KOH is required to neutralize 1 mole of HNO3
Therefore x moles of KOH is required to neutralize 0.4 moles of HNO3
x= 1×0.4/1 = 0.4 moles
Therefore, 0.4 moles of KOH is required to neutralize 0.4 moles of HNO3.
Answer is: freezing point is -0,226°C.
Answer is: the molal concentration of glucose in this solution is 1,478 m.
m(KCl) = 15 g.
n(KCl) = m(KCl) ÷ M(KCl).
n(KCl) = 15 g ÷ 74,55 g/mol.
n(KCl) = 0,2 mol
m(H₂O) = 1650 g ÷ 1000 g/kg = 1,65 kg.
b = n(KCl) ÷ m(H₂O).
b = 0,2 mol ÷ 1,65 kg = 0,122 m.
Kf(water) = 1,86°C/m.
ΔT = Kf(water) · b(solution).
ΔT = 1,86°C/m · 0,122 m.
ΔT = 0,226°C.
Answer:
Chemicals are used in the manufacturing of fertilizers
Answer:
19-73 70-65-46 78-59-86 84-64
Answer:trifluoromethanesulfonic acid (CF3SO3H).
Explanation:
The trifluoromethanesulfonic acid (CF3SO3H) has a halogen atom which stabilizes the leaving group by withdrawal of charge from the SO3- moiety. The methanesulfonic acid (CH3SO3H) contains an electron pushing group which tends to destabilize the charge centre. The better leaving group will be the stabilized anion which in this case is trifluoromethanesulfonic acid (CF3SO3H). This typifies the role of stabilizing factors in formation of chemical species.