Answer:
The magnitude of the induced voltage in the loop is 20 mV.
Explanation:
given;
length of loop, L = 0.43 m
width of loop,w = 0.43 m
velocity of moved loop, v = 0.15m/s
magnetic field strength,B = 0.31 T
To determine the magnitude of the induced voltage in the loop, we apply Faraday's law;
magnitude induced E.M.F = BLv
magnitude induced E.M.F = 0.31 x 0.43 x 0.15 = 0.02 V = 20 mV
Therefore, the magnitude of the induced voltage in the loop is 20 mV.
Answer:
pull over and bleed them to see if you need a new system then you should check you brake pads and see if their worn if all else fails pull over and kiss your bum goodbye
Explanation:
The power applied to move the box anywhere is
(20 n) x (distance moved) / (time to move the distance) .
Answer:
a) f=0.1 Hz ; b) T=10s
c)λ= 36m
d)v=3.6m/s
e)amplitude, cannot be determined
Explanation:
Complete question is:
Determine, if possible, the wave's (a) frequency, (b) period, (c) wavelength, (d) speed, and (e) amplitude.
Given:
number of wave crests 'n'= 5
pass in a time't' 54.0s
distance between two successive crests 'd'= 36m
a) Frequency of the waves 'f' can be determined by dividing number of wave crests with time, so we have
f=n/t
f= 5/ 54 => 0.1Hz
b)The time period of wave 'T' is the reciprocal of the frequency
therefore,
T=1/f
T=1/0.1
T=10 sec.
c)wavelength'λ' is the distance between two successive crests i.e 36m
Therefore, λ= 36m
d) speed of the wave 'v' can be determined by the product of frequency and wavelength
v= fλ => 0.1 x 36
v=3.6m/s
e) For amplitude, no data is given in this question. So, it cannot be determined.
It does take on new set of proerties