By
vector addition.
In fact, velocity is a vector, with a magnitude intensity, a direction and a verse, so we can't simply do an algebraic sum of the two (or more velocities).
First we need to decompose each velocity on both x- and y-axis (if we are on a 2D-plane), then we should do the algebraic sum of all the components on the x- axis and of all the components on the y-axis, to find the resultants on x- and y-axis. And finally, the magnitude of the resultant will be given by

where Rx and Rx are the resultants on x- and y-axis. The direction of the resultant will be given by

where

is its direction with respect to the x-axis.
It doesn't on account of radio waves are longer than optical waves. Radio waves are a sort of electromagnetic radiation with wavelengths in the electromagnetic range longer than infrared light. These long waves are in the radio locale of the electromagnetic range.
When water changes into vapor, it is called evaporation. BONUS: This is formed by the boiling point of water, which is 230°F (Fahrenheit) or 110°C (Celsius).
Explanation:
The water cycle basically involves five steps:
- evaporation and transpiration ⇄
- condensation, ⇄
- precipitation, ⇄
- runoff, ⇄
- infiltration ⇄
So when a <u>thunderstorm </u>occurs it <em>helps in completing the precipitation process </em>by enabling the release of water vapor stored up in the atmosphere to fall on the ground as rain.
After this, the water <em>runoffs </em><em>to the surface of the ground, on plants, into rocks, rivers, and lakes.</em>
Next, the <em>Infiltration process</em> enables the water on the ground surface to enter the soil some of which becomes groundwater.
The cycle begins again as the<em> </em><em>evaporation and transpiration</em> <em>process </em>begins, where the groundwater as a result of heat from the sun is taken back into the atmosphere, while water in plants by means of transpiration goes back <em>into the atmosphere</em>.
It then <em>condenses </em>and falls back as precipitation again.