As one moves farther and farther from the Sun, the distance between adjacent planets is greater.
Answer:
Explanation:
The net force on the potatoes is given by:
F= 52 - mgSintheta
F= 52- (2×9.8× Sin70°)
F = 52 -18.4
F= 33.58N
Using Newton's 2nd law
F = ma
a=F/m = 33.58/ 2 = 16.79m/s^2
Using the equation of motion:
V^2= u^2 + 2as
V^2 = 0 + 2× 16.79 x2
V^2 = 67.16
V=sqrt(68.16)
V= 8.195m/s This is the exit velocity of the potatoes
Kinetic energy, K.E = 1/2mv^2
KE= 1/2 × 2 × 8.195^2
KE = 67.16J
<span>According to Newton's first law of motion:
-- objects at rest will remain at rest unless acted upon by an outside force
-- objects in motion will remain in motion unless acted upon by an outside force
</span>
Answer:
The third drop is 0.26m
Explanation:
The drop 1 impacts at time T is given by:
T=sqrt(2h/g)
T= sqrt[(2×2.4)/9.8]
T= sqrt(4.8/9.8)
T= sqrt(0.4898)
T= 0.70seconds
4th drops starts at dT=0.70/3= 0.23seconds
The interval between the drops is 0.23seconds
Third drop will fall at t= 0.23
h=1/2gt^2
h= 1/2×9.81×(0.23)^2
h= 0.26m
In an Internal Combustion Engine, the fuel is singed in the chamber or vessel. Example: Diesel or Petrol motor utilized as a part of Cars.
The internal engine has its vitality touched off in the barrel, as 99.9% of motors today. In an External Combustion Engine, the inner working fuel is not consumed. Here the liquid is being warmed from an outer source. The fuel is warmed and extended through the interior instrument of the motor bringing about work. Eg. Steam Turbine, Steam motor Trains. An outer burning case is a steam motor where the warming procedure is done in a kettle outside the motor.