Answer:

Explanation:
Hello there!
In this case, according to the given information, it turns out firstly necessary to write out the described chemical reaction as shown below:

Now, we set up the expression for the calculation of the standard free energy change, considering the free energy of formation of each species, specially those of H2 and F2 which are both 0 because they are pure elements:

Regards!
Partial pressure=mole fraction×Pt
x=0.044÷44(maolarmass of CO2)×Pt
x=0.044÷(44)2×Pt
x=5×10^-4×Pt
x=5×10^-4×Pt
where Pt:1atm=760mmHg
xatm=750mmHg
750×1÷760=0.99
now;5×10^-4×099=4.95×10^-4.
Pt=4.95×10^-4
Answer: 0.082 atm L k^-1 mole^-1
Explanation:
Given that:
Volume of gas (V) = 62.0 L
Temperature of gas (T) = 100°C
Convert 100°C to Kelvin by adding 273
(100°C + 273 = 373K)
Pressure of gas (P) = 250 kPa
[Convert pressure in kilopascal to atmospheres
101.325 kPa = 1 atm
250 kPa = 250/101.325 = 2.467 atm]
Number of moles (n) = 5.00 moles
Gas constant (R) = ?
To get the gas constant, apply the formula for ideal gas equation
pV = nRT
2.467 atm x 62.0L = 5.00 moles x R x 373K
152.954 atm•L = 1865 K•mole x R
To get the value of R, divide both sides by 1865 K•mole
152.954 atm•L / 1865 K•mole = 1865 K•mole•R / 1865 K•mole
0.082 atm•L•K^-1•mole^-1 = R
Thus, the value of gas constant is 0.082 atm L k^-1 mole^-1
Answer:
The parts of an atom are<em><u> protons, electrons, and neutrons.</u></em>
A proton is positively charged and is located in the center or nucleus of the atom.
Electrons are negatively charged and are located in rings or orbits spinning around the nucleus.
The number of protons and electrons is always equal.
Answer:
The advantages described below
Explanation:
Advantages of a balanced chemical equation versus word equation:
- easier to read: chemical equations typically only take one line and they include all the relevant information needed. They are short-hand notations for what we describe in words.
- balanced chemical equations show molar ratio in which reactants react and the molar ratio of the products. Those are coefficients in front of the species. This is typically not included in a word equation, for example, hydrochloric acid reacts with potassium hydroxide. The latter statement doesn't describe the molar ratio and stoichiometry.
- includes relevant information, such as catalysts, temperature and pressure above the arrow in the equation. We wouldn't have this in a word equation most of the time.
- shows the stoichiometry of each compound itself, e. g. if we state 'ammonia', we don't know what atoms it consists of as opposed to
. - includes states of matter: aqueous, liquid, gas, solid. This would often be included in a word equation, however.