Answer:
Silver Acetate would be the Limiting Reagent.
Explanation:
The balance chemical equation for the given double displacement reaction is as;
HCl + AgC₂H₃O₂ → AgCl + HC₂H₃O₂
Step 1: <u>Calculate Moles of Starting Materials:</u>
Moles of HCl:
Moles = Mass / M.Mass
Moles = 72.9 g / 36.46
Moles = 1.99 moles
Moles of AgC₂H₃O₂:
Moles = 150 g / 166.91 g/mol
Moles = 0.898 moles
Step 2: <u>Find out Limiting reagent as:</u>
According to balance chemical equation.
1 mole of HCl reacts with = 1 mole of AgC₂H₃O₂
So,
1.99 moles of HCl will react with = X moles of AgC₂H₃O₂
Solving for X,
X = 1.99 mol × 1 mol / 1 mol
X = 1.99 mol of AgC₂H₃O₂
Hence, to completely consume 1.99 moles of Hydrochloric acid we will require 1.99 moles of Silver Acetate, But, we are provided with only 0.898 moles of Silver Acetate. This means Silver Acetate will consume first in the reaction therefore, it is the LIMITING REAGENT.
Answer:
C. increase to 7.
Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Thus, the molar relationship is 1 to 1, therefore, the moles are:

Thus, since the entire hydrogen ions are neutralized, the pH C. increase to 7.
Best regards.
Answer:
are a gas at very low volumes, when gas particles are very close together
a gas at very low temperatures, when gas particles have very little kinetic energy
a gas with highly polar molecules that have very strong intermolecular forces
Explanation:
The answer is 7. Valence electrons are the electrons in the very last shell, so we need to look at the outer “circle” and count the electrons, or the little black dots. There are 7 in the last shell.