Answer: Heating the hydrated forms of cobalt chloride reverses the reactions above, returning cobalt chloride to the blue, water-free, or anhydrous, state. Water is "liberated" in these reactions, known as dehydration reactions.
Explanation:
Answer:
Pp O2 = 82.944 KPa
Explanation:
heliox tank:
∴ %wt He = 32%
∴ %wt O2 = 68%
∴ Pt = 395 KPa
⇒ Pp O2 = ?
assuming a mix of ideal gases at the temperature and volumen of the mix:
∴ Pi = RTni/V
∴ Pt = RTnt/V
⇒ Pi/Pt = ni/nt = Xi
⇒ Pi = (Xi)*(Pt)
∴ Xi: molar fraction (ni/nt)
⇒ 0.68 = mass O2/mass mix
assuming mass mix = 100 g
⇒ mass O2 = 68 g
∴ molar mass O2 = 32 g/mol
⇒ moles O2 = (68 g)(mol/32 g) = 2.125 mol O2
⇒ mass He = 32 g
∴ molar mass He = 4.0026 g/mol
⇒ moles He = (32 g)(mol/4.0026 g) = 7.995 mol He
⇒ nt = nO2 + nHe = 2.125 mol + 7.995 mol = 10.12 moles
molar fraction O2:
⇒ X O2 = nO2/nt = (2.125 mol/10.12 mol) = 0.2099
⇒ Pp O2 = (X O2)(Pt)
⇒ Pp O2 = (0.2099)(395 KPa)
⇒ Pp O2 = 82.944 KPa
The answer to this question is <span>b) hydrogen chloride (HCl) is added to the system. This is the only acid/base on the list. Only acids and bases have the potential to directly change pH as they contribute hydronium and hydroxide ions. Glucose, sodium chloride, and sodium bromide do not affect pH in the first place.</span>
Sun and hydrogen are the answers
There is 9.375 g of nitrogen. This is because when a half-life passes, the mass becomes 2 times less. Since two half-lives have passed, you need to divide by 4.