<span>The best choice is hypochlorous acid nitrous acid (HNO2) because it has the nearest value of pK to the desired pH.
pKa of </span>nitrous acid<span> is 3.34
If we know pKa and pH values, we can calculate the required ratio of conjugate base (NO2⁻) to acid (HNO2) from the following equation:
pH=pKa + log(conc. of base)/( conc. of acid)
</span><span>3.19=3.34 + log c(NO2⁻)/c(HNO2)
</span><span>3.19 - 3.34 = log c(NO2⁻)/c(HNO2)
-0.15 = log c(NO2⁻)/c(HNO2)
c(NO2⁻)/c(HNO2) = 10⁰¹⁵ = 1.41
</span>
Answer and Explanation:
Dipole-Dipole interactions are <u>weaker than</u> hydrogen bonds.
Hydrogen bonds are a form of dipole-dipole interactions, being the strongest form of dipole-dipole interactions.
<em><u>#teamtrees #PAW (Plant And Water)</u></em>
Moles of H2SO4= 7.5x10^23/ 6.02x10^23 = 1.25 (3sf) moles of H2SO4
Mass of 1 mole of H2SO4= 98.1g
Therefore mass of 7.5x10^23 molecules of H2SO4= 122.63g
Answer:
32, 30 and 41
Explanation:
The problem here is to find the number of:
Protons, neutrons and electrons in Ge²⁺
In this ion,
We must understand that for a net positive charge to remain on an atom, the number of protons must be greater than the number of electrons.
Ge is Germanium with atomic number of 32;
So the number of protons is 32
Since the atom has lost two electrons;
Number of electrons now is 32 - 2 = 30
Number of neutrons is 41 from the periodic table.
Answer: The answer is A
Explanation: No because it’s is a mixture because physical methods were used to separate its particals