Answer:
0.36 m/s
Explanation:
im in 8th grade in honors science and i think, since u have distance and time you have to divide distance by time
Answer:
The entropy change for a real, irreversible process is equal to <u>zero.</u>
The correct option is<u> 'c'.</u>
Explanation:
<u>Lets look around all the given options -:</u>
(a) the entropy change for a theoretical reversible process with the same initial and final states , since the entropy change is equal and opposite in reversible process , thus this option in not correct.
(b) equal to the entropy change for the same process performed reversibly ONLY if the process can be reversed at all. Since , the change is same as well as opposite too . Therefore , this statement is also not true .
(c) zero. This option is true because We generate more entropy in an irreversible process. Because no heat moves into or out of the surroundings during the procedure, the entropy change of the surroundings is zero.
(d) impossible to tell. This option is invalid , thus incorrect .
<u>Hence , the correct option is 'c' that is zero.</u>
As we know that one mole of any Ideal gas at standard temperature and pressure occupies exactly 22.4 dm³ volume.
Solution for problem:
When 1 mole Neon (Ne) occupies 22.4 dm³ at STP then the volume occupied by 2.25 moles of Neon is calculated as,
= ( 22.4 dm³ × 2.25 moles ) ÷ 1 mole
= 50.4 dm³ 1dm³ = 1 L
Result:
So, 50.4 dm³ (Liter) volume will be occupied by 2.25 moles of Neon gas if it acts ideally at STP.