Li is in group 1 so it has same number of valence electrons as hydrogen.
hope it helps.
This is a incomplete question. The complete question is:
It takes 348 kJ/mol to break a carbon-carbon single bond. Calculate the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon. Round your answer to correct number of significant digits
Answer: 344 nm
Explanation:
E= energy = 348kJ= 348000 J (1kJ=1000J)
N = avogadro's number = 
h = Planck's constant = 
c = speed of light = 

Thus the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon is 344 nm
Answer:
Number of valence electrons
Explanation:
Transverse waves can be produced on a rope by moving one end of the rope up and down.The movement causes motion in the particles that make up the rope and the rope itself becomes the medium. The particles move perpendicular to the propagation. The movement also causes crests(highest point of the wave) and troughs (lowest point of the wave) which move along the direction of propagation.