Hey buddy I am here to help!
1. C
2. A
3. A & B
4. C
5. C
6. A
7. A
8. A & C
Hope it helps!
Plz mark brainlist!
Answer:
[H⁺] = 3.16 × 10⁻⁵ mol/L
Explanation:
Given data:
pH of solution = 4.5
Hydrogen ion concentration = ?
Solution;
pH = -log [H⁺]
we will rearrange this formula:
[H⁺] = 10∧-pH
[H⁺] = 10⁻⁴°⁵
[H⁺] = 3.16 × 10⁻⁵ mol/L
You can't usually just use a single spectrum line to confirm the identity of an element because there are cases that the emission line id not clearly defined. When the emission line is very weak compared to surrounding noise, in which case the more datapoints you have to build up confidence for the existence of a particular emission spectra, the better.
A chemical bond is a lasting attraction between atoms, ions or molecules that enables the formation of chemical compounds. The bond may result from the electrostatic force of attraction between oppositely charged ions as in ionic bonds or through the sharing of electrons as in covalent bonds.
Answer: The empirical formula for the given compound is 
Explanation : Given,
Percentage of C = 38.8 %
Percentage of H = 16.2 %
Percentage of N = 45.1 %
Let the mass of compound be 100 g. So, percentages given are taken as mass.
Mass of C = 38.8 g
Mass of H = 16.2 g
Mass of N = 45.4 g
To formulate the empirical formula, we need to follow some steps:
Step 1: Converting the given masses into moles.
Moles of Carbon =
Moles of Hydrogen = 
Moles of Nitrogen = 
Step 2: Calculating the mole ratio of the given elements.
For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 3.23 moles.
For Carbon = 
For Hydrogen = 
For Oxygen = 
Step 3: Taking the mole ratio as their subscripts.
The ratio of C : H : N = 1 : 5 : 1
Hence, the empirical formula for the given compound is 