Assuming that you mean table sugar (sucrose), then at room temperature and without any catalyst, there is no reaction.
However if you elevate and hold the temperature of the aqueous solution at 50 to 60 °C (especially in the presence of a suitable catalyst, like mineral acid) the sucrose dimer will split into glucose and fructose. This is called hydrolysis and the resulting solution is called an invert sugar solution.
The reaction could be written as:
C12H22O11 (sucrose) + H2O (water) → C6H12O6 (glucose) + C6H12O6 (fructose)
or
C12H22O11 (aq) + H2O (l) → C6H12O6 (aq) + C6H12O6 (aq)
Notice that both of the produced sugars have the same empirical formula. Check with your instructor or in your textbook to see if more exact formulas are needed.
Answer:
10.3 g Li) / (6.9410 g Li/mol) x (1 mol Li3PO4 / 3 mol Li) / (0.750 mol/L Li3PO4) = 0.6595 L = 660. mL
Explanation:
Answer:
Dissociated state is the predominant one
Explanation:
When a molecule with pKa of 4.52 is in an aqueous solution at pH = 4.0, follows the H-H equation, thus:
pH = pKa + log₁₀ [A⁻] / [HA]
<em>Where [A⁻] is the dissociated state and [HA] represents the protonated state</em>
Replacing:
4.0 = 5.2 + log₁₀ [A⁻] / [HA]
-1.2 = log₁₀ [A⁻] / [HA]
0.063 = [A⁻] / [HA]
[HA] = 16 [A⁻]
That means you have 16 times more [HA] than [A⁻] and the <em>dissociated state is the predominant one</em>
Answer:
an electric field is a field around a charged particle or object within which a force ( electric force) would be exerted on other charged particles or objects.
Explanation:
particles with unlike charges attract one another while particles with like charges repel each other.