1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UkoKoshka [18]
3 years ago
6

Y^3-8y^2+19y=12Solve​

Mathematics
1 answer:
Sliva [168]3 years ago
3 0

Answer:

Step-by-step explanation:

steps are below

step 1

y^3-8y^2+19y=12  equation

step 2

y^3-8y2+19y(-12)=12(-12)  minus 12 from both sides

y^3-8y^2+19y-12=0

step 3

(y-1)(y-3)(y-4)=0  add brackets

step 4

(y-1)(y-3)(y-4)=0  factor

step 5

y-1=0 or y−3=0 or y-4=0  set them equal

Answer:

y=1 or y=3 or y=4

You might be interested in
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
3 years ago
Read 2 more answers
One pipe can fill a pool in 9 hours. Another pipe can fill the pool in 6 hours. How long would it take them to fill the pool if
kow [346]

Answer:

3.6 hours or 3 hours and 36 minutes.

Step-by-step explanation:

If the first pipe can fill the pool in 9 hours that means that in 1 hour it fills \frac{1}{9} of the pool, we use the same logic for the second pipe and conclude that in 1 hour it feels up \frac{1}{6} of the pool. If both were to fill the pool together that means that in 1 hour they would fill...

\frac{1}{9} +\frac{1}{6} = \frac{5}{18} of the pool in 1 hour.

Now to find how many hours it will take divide the pool by the speed with which it is getting filled.

1 / \frac{5}{18} = 3.6 hours

3.6 hours in other words is 3 hours and 36 minutes.

3 0
2 years ago
Write an equation of the line passing through point p that is perpendicular to the given line. p(3,1), y=13x−5
Anarel [89]
You know two lines y=ax+b and y=mx+n that are perpendicular, so we have the product a*m=-1

+ This line is perpendicular to y=13x-5, so it has equation: y=-1/13x+b
+ And it passes through the point (3;1), so we have x=3, y=1. So 1=-1/13 *3+b
and b= 1+3/13= 16/13
And we have y=-1/13x+16/13
Have fun
7 0
3 years ago
Please help need this answer
I am Lyosha [343]

A function is a relation for which each value from the set the first components of the ordered pairs is associated with exactly one value from the set of second components of the ordered pair.

(2, 0), (-3, 3), (9, 1), (-3, 5)  NOT

(9, 1), (-3, 4), (2, 1), (9, 2)     NOT

(2, 4), (-3, 2), (9, 1), (-7, 2)     YES

(2, 4), (-3, 6), (2, 3), (-7, 2)     NOT

8 0
3 years ago
Melanie buys a carrying case for her new laptop, which costs 125% as much as her old laptop case. The price of her new laptop ca
lukranit [14]

125 \%of \: 65.00
3 0
3 years ago
Other questions:
  • Betty's height is 2/3 of Jinlan's height. Find the ratio of Betty's height to Jinlan's height.
    7·1 answer
  • Please help i want to pass
    11·1 answer
  • Steps for figuring full price with 25% discount is $40.
    7·1 answer
  • HELP ASAP!!!!!!!!!!!!WILL MARK BRAINLIEST!!!!!!! THANK YOU<3<3
    10·1 answer
  • How many solutions does the nonlinear system of equations graphed below have?
    14·1 answer
  • The mean of a distribution is 276, while the median is 318. Which of these
    6·1 answer
  • What is the slope-intercept equation of the line below?<br> y-intercept = (0, 2)<br> slope =<br> 11
    13·1 answer
  • Simplify the following (x–2/3)(x–2/3)​
    6·1 answer
  • Someone please help me I’ll give out brainliest please dont answer if you don’t know
    13·1 answer
  • Activity 1: Directions: Write TRUE if the statement is true and FALSE if the statement is false.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!