Answer: Eating healthy is a postive way
Explanation:
Answer:
It will reach to its maximum volume.
Explanation:
Using Ideal gas equation for same mole of gas as
:-
Given ,
V₁ = 65.0 mL
V₂ = ?
P₁ = 745 torr
The conversion of P(torr) to P(atm) is shown below:
So,
Pressure = 745 / 760 atm = 0.9803 atm
P₁ = 0.9803 atm
P₂ = 0.066 atm
T₁ = 25 ºC
T₂ = -5 ºC
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (25 + 273.15) K = 298.15 K
T₂ = (-5 + 273.15) K = 268.15 K
Using above equation as:
Solving for V₂ as:-


V₂ = 868 L
Given that:- V max = 835 L
<u>Thus, it will reach to its maximum volume.</u>
Answer:
-88.66 kJ/mol
Explanation:
The expressions of heat capacity (Cp,m) for C(s) and for H₂(g) are:
C(s): Cp,m/(J K-1 mol-1) = 16.86 + (4.77T/10³) - (8.54x10⁵/T²)
H₂(g): Cp,m/(J K-1 mol-1) = 27.28 + (3.26T/10³) + (0.50x10⁵/T²)
Cp = A + BT + CT⁻²
For the Kirchoff's Law:
ΔHf = ΔH°f + 
Where ΔH°f is the enthalpy at 298 K, T1 is 298 K, T2 is the temperature given (373 K), and DCp is the variation of Cp (products less reactants). ΔH°f for ethene is -84.68 kJ/mol and the reaction is:
2C(s) + 3H₂(g) → C₂H₆
So, DCp:
dA = A(C₂H₆) - [2xA(C) + 3xA(H₂)] = 14.73 - [2x16.86 + 3x27.28] = -100.83
dB = B(C₂H₆) - [2xB(C) + 3xB(H₂)] = 0.1272 - [2x4.77x10⁻³ + 3x3.26x10⁻³] = 0.10788
dC = C(C₂H₆) - [2xC(C) + 3xC(H₂)] = 0 - (2x(-8.54x10⁵) + 3x0.50x10⁵) = 15.58x10⁵
dCp = -100.83 + 0.10788T + 15.58x10⁵T⁻²
= -3796.48 J/mol = -3.80 kJ/mol (solved by a graphic calculator)
ΔHf = -84.68 - 3.80
ΔHf = -88.66 kJ/mol
Assuming the balloon is untied aka the air inside isn't intact.
It will get smaller when it rises.