Answer:
in a chemical reaction of NaOH with H2O, after NaOH is completely disassociated, we will find Na+ and OH- ions in the solution. (option C).
Explanation:
In a reaction where NaOH is added to H2O.
NaOH is considered a strong base, this means that in an aqueous solution ( in water) it's able to completely disassociate in ions.
There will not remain any NaOH in the solution. This means option D is not correct.
The ions in which NaOH will disassociate are : NaOH → Na+ + OH-
These ions we will find in the solution.
Not only Na+ because NaOH is a strong base, so there will be a lot of OH- ions as well in solution.
This means in a chemical reaction of NaOH with H2O, after NaOH is completely disassociated, we will find Na+ and OH- ions in the solution.
Magnesium
KE=1/2*mass*velocity^2
So u do 1/2 * 1 * 30^2
1/2 * 1 * 900
= 450kgm/s
P.s. I'm not sure if I would have to convert kg to g.
Anyways hope this helped
Answer:
The solutions are classified according to their ability to scatter light rays.
We can't just use this property because some true solutions also contain undissolved solute.
Explanation:
Tyndall effect refers to the ability of a solution to scatter light rays. True solutions do not scatter light rays while false solutions scatter light rays.
Colloid particles are not large enough to be seen with naked eyes unlike suspensions. We should not confuse a colloid with a suspension because in a suspension, the dispersed solutes are seen with naked eye.