In Hz = 333102731111111.1
In KHz = 333102731111.11115
In MHz = 333102731.1111111
In GHz = 333102.7311111111
I hope this helped.
Hi mate. I think the answer is 100
Answer: 
Explanation:
The balanced chemical reaction is,

The expression for Gibbs free energy change is,
![\Delta G_{rxn}=\sum [n\times \Delta G_(product)]-\sum [n\times \Delta G_(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20G_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G_%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G_%28reactant%29%5D)
![\Delta G_{rxn}=[(n_{CO_2}\times \Delta G_{CO_2})+(n_{CaO}\times \Delta G_{CaO})]-[(n_{CaCO_3}\times \Delta G_{CaCO_3})]](https://tex.z-dn.net/?f=%5CDelta%20G_%7Brxn%7D%3D%5B%28n_%7BCO_2%7D%5Ctimes%20%5CDelta%20G_%7BCO_2%7D%29%2B%28n_%7BCaO%7D%5Ctimes%20%5CDelta%20G_%7BCaO%7D%29%5D-%5B%28n_%7BCaCO_3%7D%5Ctimes%20%5CDelta%20G_%7BCaCO_3%7D%29%5D)
where,
n = number of moles
Now put all the given values in this expression, we get
![\Delta G_{rxn}=[(1\times -394.4)+(1\times -604.17)]-[(1\times -1128.76)]](https://tex.z-dn.net/?f=%5CDelta%20G_%7Brxn%7D%3D%5B%281%5Ctimes%20-394.4%29%2B%281%5Ctimes%20-604.17%29%5D-%5B%281%5Ctimes%20-1128.76%29%5D)

Therefore, the gibbs free energy for this reaction is, +130.19 kJ
Answer:
A would be the lowest, then C, and B would be the highest.
Explanation:
Elements tend to become more reactive as you move down the periodic table. This happens because the atoms become progressively larger and lose their hold on the outer eletrons more easily.
Answer:
Here's what I get
Explanation:
I followed the instructions and got the diagram below.