Answer:
4
Explanation:
Protein synthesis involves two major steps:
- <em>Transcription of the DNA to mRNA (a form of RNA)</em>
- <em>Translation of the mRNA molecule into a protein.</em>
<em></em>
Transcription involves the formation of a nucleotide sequence complementary to the DNA molecule, with the pairing of a different base, Uracil, with Guanine instead of the usual Thymine base. This occurs in the nucleus of the cell, and the resulting molecule is known as the mRNA.
This mRNA is transported into the cytoplasm through the nuclear pore for the next step, translation. This is primarily accomplished by ribosomes and tRNA molecules which are present in the cytoplasm of the cell. The result of this step is the generation of a protein molecule.
<h3>Hope this helps</h3>
Well its Organic Chemistry... and is the Fractional Distillation of Crude Oil
Answer:
Explanation:
At constant pressure and temperature, the mole ratio of the gases is equal to their volume ratio (a consequence of Avogadro's law).
Hence, the <em>complete combustion reaction</em> that has a ratio of 100 ml of gaseous hydrocarbon to 300 ml of oxygen, is that whose mole ratio is 1 mol hydrocarbon : 3 mol of oxygen.
Then, you must write the balanced chemical equations for the complete combustion of the four hydrocarbons in the list of choices, and conclude which has such mole ratio (1 mol hydrocarbon : 3 mol oxygen).
A complete combustion reaction of a hydrocarbon is the reaction with oxygen that produces CO₂ and H₂O, along with the release of heat and light.
<u>a. C₂H₄:</u>
- C₂H₄ (g) + 3O₂ (g) → 2CO₂(g) + 2H₂O (g)
Precisely, for this reaction the mole ratio is 1 mol C₂H₄: 2 mol O₂, hence, this is the right choice.
The following analysis just shows that the other options are not right.
<u>b. C₂H₂:</u>
- 2C₂H₂ (g) + 5O₂ (g) → 4CO₂(g) + 2H₂O (g)
The mole ratio for this reaction is 2 mol C₂H₂ :5 mol O₂.
<u>с. С₃Н₈</u>
- C₃H₈ (g) + 5O₂ (g) → 3CO₂(g) + 4H₂O (g)
The mole ratio is 1 mol C₃H₈ : 5 mol O₂
<u>d. C₂H₆</u>
- 2C₂H₆ (g) +7 O₂ (g) → 4CO₂(g) + 6H₂O (g)
The mole ratio is 2 mol C₂H₆ : 7 mol O₂
The azimuthal quantum number (l) determines its orbital angular momentum and describes the shape of the orbital.
s-orbitals (for example 1s, 2s) are spherically symmetric around the nucleus of the atom.
p-orbitals are dumb-bell shaped. l = 0,1...n-1, when l = 1, that is p subshell.
d-orbitals are butterfly shaped.