<span>2Li⁺(aq) + Zn⁰(s) → 2Li⁰(s) + Zn²⁺(aq)
</span>2Li⁺(aq) + 2e⁻ → 2Li⁰(s)
Zn⁰(s) → Zn²⁺(aq) +2e⁻
2 electrons are transferred from atom of Zn⁰ to 2 ions of Li⁺.
calculate moles of both reagents given and the moles of FeS that each of them would form if they were in excess
moles = mass / molar mass
moles Fe = 7.62 g / 55.85 g/mol
= 0.1364 moles
1 mole Fe produces 1 mole FeS
Therefore 7.62 g Fe can form 0.1364 moles FeS
moles S = 8.67 g / 32.07 g/mol
= 0.2703 moles S
1 mole S can from 1 moles FeS
So 8.67 g S can produce 0.2703 moles FeS
The limiting reagent is the one that produces the least product. So Fe is limiting.
The maximum amount of FeS possible is from complete reaction of all the limiting reagent.
We have already determined that the Fe can form up to 0.1364 moles of FeS, so this is max amount of FeS you can get.
Convert to mass
hope this helps :)
Gaining of electrons is reduction and loss of electrons is oxidation.
<em>Hope this helped! :)</em>
Answer:
Pb(NO₃)₂ + K₂CrO₄ ⟶ PbCrO₄ + 2KNO₃
Step-by-step explanation:
The unbalanced equation is
Pb(NO₃)₂ + K₂CrO₄ ⟶ PbCrO₄ + KNO₃
Notice that the complex groups like NO₃ and CrO₄ stay the same on each side of the equation.
One way to simplify the balancing is to replace them with a single letter.
(a) For example, let <em>X = NO₃</em> and <em>Y =CrO₄</em>. Then, the equation becomes
PbX₂ + K₂Y ⟶ PbY + KX
(b) You need 2X on the right, so put a 2 in front of KX.
PbX₂ + K₂Y ⟶ PbY + 2KX
(c) Everything is balanced. Now, replace X and Y with their original meanings. The balanced equation is
Pb(NO₃)₂ + K₂CrO₄ ⟶ PbCrO₄ + 2KNO₃
I'd say no because the only pure substances are elements