Answer:
If cookies are for $1 and brownies are for $2, let number of cookies = x and number of brownies = y
∴ $1*(x*1) + $2*(y*1) = $13
Step-by-step explanation:
1) You can buy 4 brownies for $2 each = 2*4 = $8
The rest you can buy cookies = 5 cookies = $5
$8+$5=$13
2) You can buy 5 brownies and 3 cookies = $10+$3 = $13
3) You can buy 3 brownies and 7 cookies = $6+$7=$13
Equation: -
If cookies are for $1 and brownies are for $2, let number of cookies = x and number of brownies = y
∴ $1*(x*1) + $2*(y*1) = $13
Step-by-step explanation:
Given that the graph shows the normal distribution of the length of similar components produced by a company with a mean of 5 centimeters and a standard deviation of 0.02 centimeters.
A component is chosen at random, the probability that the length of this component is between 4.98 centimeters and 5.02
=P(|z|<1) (since 1 std dev on either side of the mean)
=2(0.3418)
=0.6826
=68.26%
The probability that the length of this component is between 5.02 centimeters and 5.04 centimeters is
=P(1<z<2) (since between 1 and 2 std dev from the mean)
=0.475-0.3418
=0.3332
=33.32%
Answer:
d.
Step-by-step explanation:
The goal of course is to solve for x. Right now there are 2 of them, one on each side of the equals sign, and they are both in exponential positions. We have to get them out of that position. The way we do that is by taking the natural log of both sides. The power rule then says we can move the exponents down in front.
becomes, after following the power rule:
x ln(2) = (x + 1) ln(3). We will distribute on the right side to get
x ln(2) = x ln(3) + 1 ln(3). The goal is to solve for x, so we will get both of them on the same side:
x ln(2) - x ln(3) = ln(3). We can now factor out the common x on the left to get:
x(ln2 - ln3) = ln3. The rule that "undoes" that division is the quotient rule backwards. Before that was a subtraction problem it was a division, so we put it back that way and get:
. We can factor out the ln from the left to simplify a bit:
. Divide both sides by ln(2/3) to get the x all alone:

On your calculator, you will find that this is approximately -2.709
Take 16x divide it by 2 and square it. 16/2= 8. 8^2= 64. So, the first step will be to add 64 to both sides.
1. What are the coordinates of the circumcenter of a triangle with vertices A(0,1), B(2, 1) , and C(2, 5) ?
2. What are the coordinates of the centroid of a triangle with vertices A(−6, 0) , B(−4, 4) , and C(0, 2) ?