Answer:
Increased Heat, Drought, and Insect outbreaks.
Explanation:
Increased heat, drought and insect outbreaks, all linked to climate change, have increased wildfires. Declining water supplies, reduced agricultural yields, health impacts in cities due to heat, and flooding and erosion in coastal areas are additional concerns.
Triprotic acid is a class of Arrhenius acids that are capable of donating three protons per molecule when dissociating in aqueous solutions. So the chemical reaction as described in the question, at the third equivalence point, can be show as: H3R + 3NaOH ⇒ Na3R + 3H2O, where R is the counter ion of the triprotic acid. Therefore, the ratio between the reacted acid and base at the third equivalence point is 1:3.
The moles of NaOH is 0.106M*0.0352L = 0.003731 mole. So the moles of H3R is 0.003731mole/3=0.001244mole.
The molar mass of the acid can be calculated: 0.307g/0.001244mole=247 g/mol.
Answer: 
Explanation: A double displacement reaction is one in which exchange of ions take place.
The compounds which are soluble in water are designated by symbol (aq) and those which are insoluble in water and remain in solid form are represented by (s) after their chemical formulas.
Thus the exchange of ions take place and all the compounds are soluble so the chemical formulas are followed by the symbol (aq).
Answer:
True.
Explanation:
Yes, analyses of enzymes found in the blood are used as indicators of tissue damage in the heart, liver, muscle etc has occurred. This leakage of enzymes into the bloodstream tells us whether the tissue is damaged or not. Lactate dehydrogenase is a type of enzyme which is used as indicator which is responsible for the interconverts lactate and pyruvate. The concentration of this enzyme in the blood tells us about tissue damage.
Answer:
Weak acid
Explanation:
A titration curve is a graphical description of the change in pH of the solution in the conical flask as the reagent is added from the burette. A titration curve can be plotted for the different kinds of acid and base titrations. The volume of the titrant is always plotted as the independent variable and the pH of the solution as the dependent variable. The equivalence point is read off from the titration curve. A titration curve is very important because it shows the pH at various points during the titration.
A weak acid/strong base titration leads to an equivalence point above 7. From the question, we were told that the pH at equivalence point lies around 8. Hence the unknown substance must be a weak acid.