Answer:
let m be the mass of the object, K be the force constant and Fs be the force by the spring on the mass.
Answer:
150J
Explanation:
Formula : <u>Work</u><u> </u><u>done</u>
Force x distance
work done = force x distance
Distance should be measured in meters
300÷100=3m
work done = 450 x 3
=150J
Answer:
y = 4 Sin (2πt)
Explanation:
Amplitude, A = 4
frequency, f = 1
Wave function is given by
y = A sinωt
where, ω is angular frequency
ω = 2 π f = 2 π x 1 = 2π
So, the desired wave function
y = 4 Sin (2πt)
Picture #1:
GPE = (mass) x (gravity) x (height)
GPE = (2 kg) x (9.8 m/s²) x (40 m) = 784 joules
KE = (1/2) (mass) (speed²)
KE = (1/2) (2 kg) (5 m/s)²
KE = (1 kg) (25 m²/s²) = 25 joules
Picture #2:
KE = (1/2) (mass) (speed²)
KE = (1/2) (2 kg) (10 m/s)²
KE = (1 kg) (100 m²/s²) = 100 joules
Picture #3:
GPE = (mass) x (gravity) x (height)
GPE = (20 kg) x (9.8 m/s²) x (2 m) = 392 joules
KE = (1/2) (mass) (speed²)
KE = (1/2) (20 kg) (5 m/s)²
KE = (10 kg) (25 m²/s²) = 250 joules
Picture #4:
GPE = (mass) x (gravity) x (height)
98 joules = (1 kg) x (9.8 m/s²) x (height)
Height = (98 joules) / (1 kg x 9.8 m/s²)
Height = 10 meters
Picture #5:
GPE = (mass) x (gravity) x (height)
39,200 Joules = (mass) x (9.8 m/s²) x (20 m)
Mass = (39,200 joules) / (9.8 m/s² x 20 m)
Mass = 200 kg