do u know the answer to this question yet
Answer:
The value is 
The direction is into the surface
Explanation:
From the question we are told that
The mass density is 
The coefficient of kinetic friction is
The current the wire carries is 
Generally the magnetic force acting on the wire is mathematically represented as

Here
is the frictional force which is mathematically represented as

While
is the magnetic force which is mathematically represented as

Here
is the angle between the direction of the force and that of the current
So

So

=> ![B = \mu_k * \frac{m}{L} * [\frac{g}{I} ]](https://tex.z-dn.net/?f=B%20%20%3D%20%20%5Cmu_k%20%2A%20%20%5Cfrac%7Bm%7D%7BL%7D%20%2A%20%5B%5Cfrac%7Bg%7D%7BI%7D%20%5D)
=> ![B = 0.25 * 0.117 * [\frac{9.8}{1.24} ]](https://tex.z-dn.net/?f=B%20%20%3D%20%200.25%20%2A%20%200.117%20%20%2A%20%5B%5Cfrac%7B9.8%7D%7B1.24%7D%20%5D)
=> 
Apply the right hand curling rule , the thumb pointing towards that direction of the current we see that the direction of the magnetic field is into the surface as shown on the first uploaded image
Answer:
28.7 m at 46.9°
Explanation:
The x component of the displacement is:
x = 6 m cos 0° + 25 m cos 57°
x = 19.6 m
The y component of the displacement is:
y = 6 m sin 0° + 25 m sin 57°
y = 21.0 m
The total displacement is found with Pythagorean theorem:
d = √(x² + y²)
d = 28.7 m
And the direction is found with trig:
θ = tan⁻¹(y/x)
θ = 46.9°
The Correct answer to this question for Penn Foster Students is: 214.4 J
Answer:
3600 J
Explanation:
According to given question
P(rated)=60w
V= 120
I =0.50 A
t=600 second
Now,
Energy can be calculated as :

Where,
V is voltage
I is current
t is time in second
Now,
Putting the all value in above equation E
So,

Therefore, 36000 J energy use up by light bulb