Answer:
the energy of the spring at the start is 400 J.
Explanation:
Given;
mass of the box, m = 8.0 kg
final speed of the box, v = 10 m/s
Apply the principle of conservation of energy to determine the energy of the spring at the start;
Final Kinetic energy of the box = initial elastic potential energy of the spring
K.E = Ux
¹/₂mv² = Ux
¹/₂ x 8 x 10² = Ux
400 J = Ux
Therefore, the energy of the spring at the start is 400 J.
It’s frequency is high and microwaves can pass through the atmosphere of the Earth.
Answer:

Explanation:
It is given that,
Mass of Albertine, m = 60 kg
It can be assumed, the spring constant of the spring, k = 95 N/m
Compression in the spring, x = 5 m
A glass sits 19.8 m from her outstretched foot, h = 19.8 m
When she just reach the glass without knocking it over, a force of friction will also act on it. Using the conservation of energy for the spring mass system such that,




So, the coefficient of kinetic friction between the chair and the waxed floor is 0.101. Hence, this is the required solution.
Answer:

Explanation:
<u>Tangent and Angular Velocities</u>
In the uniform circular motion, an object describes the same angles in the same times. If
is the angle formed by the trajectory of the object in a time t, then its angular velocity is

if
is expressed in radians and t in seconds the units of w is rad/s. If the circular motion is uniform, the object forms an angle
in 2t, or
in 3t, etc. Thus the angular velocity is constant.
The magnitude of the tangent or linear velocity is computed as the ratio between the arc length and the time taken to travel that distance:

Replacing the formula for w, we have
