Answer:
F' = 169.45N
This is a vector addition involving two vectors. In order to do this correctly, we need to resolve each of those forces into their vertical and horizon components and sum them up accordingly (all vertical components summed together and all horizontal components summed together). Then the magnitude of the summation is found by taking the square root of the sun of the squares of the summations along the vertical and the horizontal.
Explanation:
See the attachment below for the full solution to the problem.
Thank you for reading this post. I hope it is helpful to you.
Because, body at higher temperature has higher average KE of molecules and body at lower temperature has lower average KE of molecules. When two bodies having higher temperature and lower temperature are keep in contact, the body at higher temperature shares their energy to molecules at lower temperature.
please mark me as brainliest
Answer:
A. It could be depleted quickly.
Explanation:
It's Non-renewable, meaning it's hard to get back quickly, and using it at a high rate makes it run out well.. quicker.
C. movement of glaciers.
Good Luck.
Answer:
Explanation:
a )
momentum of baseball before collision
mass x velocity
= .145 x 30.5
= 4.4225 kg m /s
momentum of brick after collision
= 5.75 x 1.1
= 6.325 kg m/s
Applying conservation of momentum
4.4225 + 0 = .145 x v + 6.325 , v is velocity of baseball after collision.
v = - 13.12 m / s
b )
kinetic energy of baseball before collision = 1/2 mv²
= .5 x .145 x 30.5²
= 67.44 J
Total kinetic energy before collision = 67.44 J
c )
kinetic energy of baseball after collision = 1/2 x .145 x 13.12²
= 12.48 J .
kinetic energy of brick after collision
= .5 x 5.75 x 1.1²
= 3.48 J
Total kinetic energy after collision
= 15.96 J