Answer:
The maximum potential difference is 186.02 x 10¹⁵ V
Explanation:
formula for calculating maximum potential difference

where;
Ke is coulomb's constant = 8.99 x 10⁹ Nm²/c²
k is the dielectric constant = 2.3
b is the outer radius of the conductor = 3 mm
a is the inner radius of the conductor = 0.8 mm
λ is the linear charge density = 18 x 10⁶ V/m
Substitute in these values in the above equation;

Therefore, the maximum potential difference this cable can withstand is 186.02 x 10¹⁵ V
Answer:
- The work made by the gas is 7475.69 joules
- The heat absorbed is 7475.69 joules
Explanation:
<h3>
Work</h3>
We know that the differential work made by the gas its defined as:

We can solve this by integration:

but, first, we need to find the dependence of Pressure with Volume. For this, we can use the ideal gas law


This give us

As n, R and T are constants

![\Delta W= \ n \ R \ T \left [ ln (V) \right ]^{v_2}_{v_1}](https://tex.z-dn.net/?f=%20%5CDelta%20W%3D%20%5C%20n%20%5C%20R%20%5C%20T%20%20%5Cleft%20%5B%20ln%20%28V%29%20%5Cright%20%5D%5E%7Bv_2%7D_%7Bv_1%7D%20)



But the volume is:



Now, lets use the value from the problem.
The temperature its:

The ideal gas constant:

So:


<h3>Heat</h3>
We know that, for an ideal gas, the energy is:

where
its the internal energy of the gas. As the temperature its constant, we know that the gas must have the energy is constant.
By the first law of thermodynamics, we know

where
is the Work made by the gas (please, be careful with this sign convention, its not always the same.)
So:


Gauss law states that the electric flux through any closed
surface is proportional to the net electric charge inside the surface. This is
expressed mathematically in the form of:
Φ = Q / εo
Where,
Φ = the electric flux = unknown (which we have to find for)
Q = the net electric charge = 5.0 µC = 5 E-6 C
εo = the permittivity of free space = a constant value =
8.85 E-12 C^2 / N m^2
Plugging in the values
into the equation will result in:
Φ = 5 E-6
C / (8.85 E-12 C^2 / N m^2)
Φ = 564,971.75 Wb = <span>5.6 x
10^5 Wb </span>
If you give it unbalanced force it would go up and if you can't give it enough it will stay a balanced force