The Hubble Space Telescope is a joint ESA/NASA project and was launched in 1990 by the Space Shuttle mission STS-31 into a low-Earth orbit 569 km above the ground. During its lifetime Hubble has become one of the most important science projects ever. Hope this helps! ~ Autumn :)
Answer:
(a) = -0.16%
(b) = smaller
Explanation:
given
power = 460 W
potential difference = 120 V
(a) what percentage will its heat output drop if the applied potential difference drops to 110 V ?
we know
.....................(i)
we need to find change in power
..............(ii)
from equations we get



(b)
if we increase temperature resistance will increase and decrease with decrease in temperature and we know power is inversely proportional to resistance so if potential decrease and it would cause drop in power
and due to this increment of heating power resistance will decrease so actual drop in the power would be smaller
The friction factor and head loss when velocity is 1m/s is 0.289 and 1.80 × 10^8 respectively. Also, the friction factor and head loss when velocity is 3m/s is 0.096 and 5.3 × 10^8 respectively.
<h3>How to determine the friction factor</h3>
Using the formula
μ = viscosity = 0. 06 Pas
d = diameter = 120mm = 0. 12m
V = velocity = 1m/s and 3m/s
ρ = density = 0.9
a. Velocity = 1m/s
friction factor = 0. 52 × 
friction factor = 0. 52 × 
friction factor = 0. 52 × 0. 55
friction factor 
b. When V = 3mls
Friction factor = 0. 52 × 
Friction factor = 0. 52 × 
Friction factor = 0. 52 × 0. 185
Friction factor 
Loss When V = 1m/s
Head loss/ length = friction factor × 1/ 2g × velocity^2/ diameter
Head loss = 0. 289 ×
×
× 
Head loss = 1. 80 × 10^8
Head loss When V = 3m/s
Head loss =
×
×
× 
Head loss = 5. 3× 10^8
Thus, the friction factor and head loss when velocity is 1m/s is 0.289 and 1.80 ×10^8 respectively also, the friction factor and head loss when velocity is 3m/s is 0.096 and 5.3 ×10^8 respectively.
Learn more about friction here:
brainly.com/question/24338873
#SPJ1
I think it’s going to be the 2nd one
Velocity = 14 m/s
Time = 20 s
Displacement = Velocity×Time = (14×20) m = 280 m
The displacement is 280 m towards the direction of motion.