If there is an increase in industrial activity, that means that more heat will be dissipated to the atmosphere in the form of carbon dioxide. Industrialization requires fuel to keep the processes on the go. At the end of the pipeline, the combustion of fuel would result to carbon dioxide released to the atmosphere. That's how it is contributing to the global climate change through the greenhouse effect.
When gases dissolve in gases or when liquids and gases dissolve in liquids, particles movement eventually spreads the particles evenly throughout the solvent resulting in a homogeneous mixture.
Explanation:
When gases dissolve in gases or when liquids and gases dissolve in liquids, particle movement eventually spreads the particles evenly throughout the solvent resulting in a homogeneous mixture.
Solid particles do not dissolve easily like liquids and gases dissolve. Solid particles when dissolved in solid the particles moves very little. After getting heated and becomes molten then they get mixed.
But in the liquids and gases atoms moves and the particles get eventually spread and also get mixed after cooled.
A physical property of an element is a property of an element that can observed or measured without changing the chemical nature of the element.
A chemical property of an element is a property of an element that can only be observed or measure when the chemical property of the element is altered or changed.
Based on this;
The boiling point of bromine is a physical property of bromine.
The high reactivity of bromine with many elements is a chemical property of bromine.
Water moves from an area of higher water potential (aka. "more water" in simple language) to an area of lower water potential (aka. "less water" in simple language).
For A, cells in carrots have water stored in their cytoplasm, where many soluble substances may be found (e.g. sodium ions). On the other hand, pure water has no other soluble substances other than the water molecules (I.e. H2O). Pure water will thus have a higher water potential as compared to the water in carrot cells, and so, water will move from pure water into the carrot cells via osmosis down a concentration gradient.
B. Corn syrup is water that has high concentrations of sugars, thus it is very likely to have a lower water potential than the cells of carrots. Water will move from within the cells of carrots and out to the corn syrup, down a concentration gradient.
C. The water in carrot cells will stay the same, since carrot cells have the same water potential as the surrounding solution which has the same water potential as cytoplasm.
Hope this helps! :)
The theory assumes that collisions between gas molecules and the walls of a container are perfectly elastic, gas particles do not have any volume, and there are no repulsive or attractive forces between molecules .