To determine the mass, you need to know the molecular weight of the c8h10n4o2 . The molecular weight of <span>c8h10n4o2 would be: 8*12 + 10*1 + 4*14 + 2*16= 194g/mol.
To convert the number of molecules into moles, you need to divide it with 6.02 * 10^23. The calculation of the mass of </span>c8h10n4o2 would be:
(7.20×10^20 molecules) /(6.02 * 10^23 molecule/mol) * 194g/mol= 232 * 10^-3 grams= 0.232 grams
Explanation:
Different atoms binds their outermost shell electrons with different amount of energy.
The amount of energy required to remove an electron from an atom is the ionization energy.
- Ionization energy measures the readiness of an atom to lose electrons.
- From the given problem, we can infer that in group O the ionization energy decreases down the group.
- Helium has the highest ionization energy.
- Down a group on the periodic table, ionization energy decrease because:
- atomic radii increases down the group.
- there is an increasing shielding/screening effect of inner shell electrons on the outermost shell electrons.
Learn more:
Ionization energy brainly.com/question/2153804
#learnwithBrainly
Answer:
and earthquake epicenters are related to tectonic plate boundaries. causes Earth's plates to move. Most volcanoes and earthquakes are caused by the motion and interaction of Earth's plates. The way Earth's plates interact at boundaries is an important factor in the locations of earthquakes and volcanoes
Explanation:
Answer:
1.43 (w/w %)
Explanation:
HCl reacts with NH3 as follows:
HCl + NH3 → NH4+ + Cl-
<em>1 mole of HCl reacts per mole of ammonia.</em>
Mass of NH3 is obtained as follows:
<em>Moles HCl:</em>
0.02999L * (0.1068mol / L) = 3.203x10-3 moles HCl = <em>Moles NH3</em>
<em>Mass NH3 in the aliquot:</em>
3.203x10-3 moles NH3 * (17.031g / mol) = 0.0545g.
Mass of sample + water = 22.225g + 75.815g = 98.04g
Dilution factor: 98.04g / 14.842g = 6.6056
That means mass of NH3 in the sample is:
0.0545g * 6.6056 = 0.36g NH3
Weight percent is:
0.36g NH3 / 25.225g * 100
<h3>1.43 (w/w %)</h3>
A solution of KNO3 consists of ions of potassium and nitrate. The ionic equation is expressed as:
KNO3 = K+ + NO3-
There is 1 is to 1 ratio between the substances. So, the molarity of NO3- in the solution is calculated as follows:
0.160 mol / L KNO3 ( 1 mol NO3- / 1 mol KNO3 ) = 0.160 M NO3-