First, we need to get the number of moles:
from the reaction equation when Y4+ takes 4 electrons and became Y, X loses 4 electrons and became X4+
∴ the number of moles n = 4
we are going to use this formula:
㏑K = n *F *E/RT
when K is the equilibrium constant = 4.98 x 10^-5
and F is Faraday's constant = 96500
and the constant R = 8.314
and T is the temperature in Kelvin = 298 K
and n is number of moles of electrons = 4
so, by substitution:
㏑4.98 x 10^-5 = 4*96500*E / 8.314*298
∴E = -0.064 V
Positive ion with a radius smaller than the radius of the atom
Not sure about any others but I believe 3 goes with B
Answer:
The solubility of the mineral compound X in the water sample is 0.0189 g/mL.
Explanation:
Step 1: Given data
The volume of water sample = 46.0 mL.
The weight of the mineral compound X after evaporation, drying, and washing = 0.87 g.
Step 2: Calculate the solubility of X in water
46.00 mL of water sample contains 0.87 g of the mineral compound X.
To calulate how many grams of the mineral compound 1.0 mL of water sample contains:
0.87 g/46.0 mL = 0.0189 g.
This means the solubility of the mineral compound X in the water sample is 0.0189 g/mL.
Answer: Option (A) is the correct answer.
Explanation:
Nitrogen is a non-metal and it is known that non-metals do not conduct electricity. Thus, it will be least conductive out of the given options.
Whereas antimony (Sb) is a metalloid. Metalloid are the substance that show properties of both metals and non-metals. Thus, antimony will conduct electricity.
On the other hand, bismuth (Bi) is a metal hence, it will conduct electricity.
Thus, we can conclude that the order from least conductive to most conductive will be nitrogen (N), antimony (Sb), bismuth (Bi).