Answer:
Electron dot diagram is attached below
Explanation:
Sodium is alkali metal and present in group one. It has one valence electron. All alkali metal form salt when react with halogens.
Sodium loses its one electron to get stable. While all halogens have seven valence electrons they need only one electron to get stable electronic configuration.
When alkali metals such as sodium react with halogen fluorine it loses its one valence electron which is accepted by fluorine and ionic bond is formed. The compound formed is called sodium fluoride.
Na + F → NaF
In cross and dot diagram electrons of one atom are shown as dots while other atom shown as cross to distinguish.
Electron dot diagram is attached below.
False
becuase the temperates is dependant on heat or cold sources
Answer:
429.4 kJ are absorbed in the endothermic reaction.
Explanation:
The balanced chemical equation tells us that 1168 kJ of heat are absorbed in the reaction when 4 mol of NH₃ (g) react with 5 mol O₂ (g).
So what we need is to calculates how many moles represent 25 g NH₃(g) and calculate the heat absorbed. (NH₃ is the limiting reagent)
Molar Mass NH₃ = 17.03 g/mol
mol NH₃ = 25.00 g/ 17.03 g/mol = 1.47 mol
1168 kJ /4 mol NH₃ x 1.47 mol NH₃ = 429.4 kJ
Ionization/dissociation, Ka, larger, concentration/molarity, mostly/completely, strong, weak, base, water, acid, strong
Answer:
7.81 moles
Explanation:
To solve this problem, let us generate an expression involving volume and number of mole of the gas since the pressure and temperature of the gas are constant.
From ideal gas equation:
PV = nRT
Divide both side by P
V= nRT/P
Divide both side by n
V/n = RT/P
Since RT/P are constant, then:
V1/n1 = V2/n2
Data obtained from the question include:
V1 = 4.11
n1 = 2.51 moles
V2 = 16.9L
n2 =?
Using the above equation i.e V1/n1 = V2/n2, the final number of the gas can be obtained as illustrated below:
4.11/2.51 = 16.9/n2
Cross multiply to express in linear form
4.11 x n2 = 2.51 x 16.9
Divide both side by 4.11
n2 = (2.51 x 16.9) / 4.11
n2 = 10.32moles
Now, to obtain the number of mole of the gas added, we'll subtract the initial mole from the final mole i.e
n2 — n1
Number of mole added = n2 — n1
10.32 — 2.51 = 7.81 moles
Therefore, 7.81 moles of the gas was added to the container