Explanation:
Given:
v₀ = 0 m/s
v = 49 m/s
a = 9.8 m/s²
Find: t
v = at + v₀
49 m/s = (9.8 m/s²) t + 0 m/s
t = 5 s
When you first pull back on the pendulum, and when you pull it back really high the Potential Energy is high and the Kinetic Energy is low, But when up let go, and it gets right around the middle, that's when the Potential energy transfers to Kinetic, at that point the kinetic Energy is high and the potential Energy is low. But when it comes back up at the end. The same thing will happen, the Potential Energy is high, and the Kinetic Energy is low. Through all of that the Mechanical Energy stays the same.
I hope this helps. :)
Brainliest?
Transform boundary
is the answer from stemscopes
Answer: B) 0.00337 m3.
Explanation:
Given data:
Mass of the ball = 10kg
Weight of the ball in air = 98N
Weight of the ball in water = 65N
Solution:
To get the Volume of the ball when submerged in water, we divide the weight of the ball in water with the difference in apparent weight by 9.8m/s^2.
= 98 - 65 / 9.8
= 33 / 9.8
= 3.37kg
The volume of the ball is 3.37kg
The density of water is 1kg per Liter.
So 3.37 kg of water would have a volume of 3.37 Liters.
Therefore the ball would have a volume of 3.37 Liters (or 0.00337 cubic meters).