Answer:

Explanation:
Hello there!
In this case, when performing units conversions involving two proportional factors we need to make sure we first convert to the base unit and then to the target one; thus, since 1 kg = 1000 g and 1 g = 1000 mg, we set up the following expression:

Best regards!
The heat lost by the metal should be equal to the heat
gained by the water. We know that the heat capacity of water is simply 4.186 J
/ g °C. Therefore:
100 g * 4.186 J / g °C * (31°C – 25.1°C) = 28.2 g * Cp *
(95.2°C - 31°C)
<span>Cp = 1.36 J / g °C</span>
Answer:
See explanation.
Explanation:
Hello,
Haber process is defined as the widely acknowledged productive process of ammonia by the reaction:

Which is carried out in gaseous phase. Thus, by means of the Le Chatelier's principle, it is possible to know that its standard enthalpy of reaction is -45.90 kJ/mol (NIST webbook) for which it is an exothermic chemical reaction, for that reason less ammonia will be produced at high temperature, nonetheless, the temperature should not be too low since the reaction rate significantly decrease, therefore, the optimum found temperature is 450 °C.
Moreover, since there are more moles (3+1=4) at the reactants and less moles at the products (2), increasing the pressure of the reaction increases the yield of ammonia, nonetheless, higher pressures involve the purchasing of more expensive equipment to withstand the high-pressures, for that reason, the best found pressure has been set as 200 atm.
Best regards.
Answer:
A. CuCO3(s) → CuO(s) + CO2(g) is the balanced equation.
Explanation: