Hello,
The answer is option C protons and neutrons.
Reason:
The middle of the nucleus contains the protons and the neutrons which contain the positive and electrical charges which decides the element which means option C will be your answer.
If you need anymore help feel free to ask me!
Hope this helps!
~Nonportrit
Answer:
42.65g
Explanation:
Given parameters:
Mass of K = 4g
Unknown: Mass of KCl
Solution:
Complete equation of the reaction:
2K + Cl₂ → 2KCl
To solve this problem, we know that the reactant in short supply is potassium K and this dictates the amount of products that would be formed. The chlorine gas is in excess and we can't use it to determine the amount of product that would form.
Now, we work from the known to the unknown. Since we know the mass of K given in the reaction, we can simply find the molar relationship between the reacting potassium and the product. We simply convert the mass to mole and compare to the product. From there we can find the mass of KCl that would be produced.
Calculating number of moles of K
Number of moles = 
Number of moles of K =
= 0.103mol
From the given reaction equation:
2 moles of K will produce 2 moles of KCl
Therefore 0.103mol of K will produce 0.103mol of KCl
To find the mass of KCl produced,
Mass of KCl = number of moles of KCl x molar mass
Molar mass of KCl = 39 + 35.5 = 74.5gmol⁻¹
Mass of KCl = 0.103 x 74.5 = 42.65g
Answer:
- <u>You need to convert the number of atoms of Ca into mass in grams, using Avogadro's number and the atomic mass of Ca.</u>
Explanation:
The amount of matter is measured in grams. Thus, you need to convert the number of atoms of Ca (calcium) into mass to compare with 2.45 grams of Mg.
To convert the atoms of calcium into mass, you divide by Avogadro's number, to obtain the number of moles of atoms, and then divide by the atomic mass of calcium.
<u />
<u>1. Number of moles, n</u>

<u />
<u>2. Mass</u>
- mass = number of moles × atomic mass
- mass = 0.053969mol × 40.078g/mol = 2.16g
Then, 2.45 g of Mg represent a greaer mass than the 3.25 × 10²² atoms of Ca.
Molar mass of MgCO3 is 84.313 g/mol
You can calculate this from data on the periodic table:
Molar mass Mg = 24.305g/mol
molar mass C = 12.011g/mol
molar mass O = 15.999g/mol mass 3 mol = 47.997g
Total = 84.313g/mol
Mass to be used in 1.2L of 1.5M solution = 84.313g * 1.2L * 1.5mol /L = 151.763g
I have not taken significant figures into account
The balanced equation you provide is not necessary in this calculation
<span>Soda ash is sodium carbonate, Na2CO3. One chemical property of this compound is its basicity, which is measured by the pKb. The pKb for sodium carbonate is 3.67. It is the result of the dissociation of Na2CO3 in water: Na2CO3 + H2O = Na HCO3 + Na (+) + OH(-). This pKb means that it is a highly basic compound. pKb = log { 1 / [OH-] }, so pKb is a measure of the concentrations of OH- ions, which is the basiciity of the compound. </span>