Answer:
(1) 0.333 Hz
(2) 4 sec
(3) 2 sec, 0.5 Hz
Explanation:
(1) We have given time period of pendulum is 3 sec
So T = 3 sec
Frequency will be equal to 
(2) Frequency of the pendulum is given f = 0.25 Hz
Time period is equal to 
(3) It is given that a pendulum makes 10 back and forth swings in 20 seconds
So time taken to complete 1 back and forth swings = 
So time period T = 2 sec
Frequency will be equal to 
Answer:
Never gonna give you up
Never gonna let you down
Never gonna run around and desert you
Haha Rick rolled you
Explanation:
jk my favourite song is Thunder, Despacito
The frog's launch speed and the time spends in the air are 22.5m/s and 2.73s respectively.
To find the answer, we need to know about the time of flight and range of projectile motion.
<h3>What's the expression of range of a projectile motion?</h3>
- Range = U²× sin(2θ)/g
- U= initial velocity, θ= angle of projectile and g= acceleration due to gravity
- U=√{Range×g/sin(2θ)}
- Here, range= 2.20m, = 36.5°
- U= √{2.20×9.8/sin(73)}
U= √{2.20×9.8/sin(73)} = 22.5m/s
<h3>What's the expression of time of flight in projectile motion?</h3>
- Time of flight= (2×U×sinθ)/g
- So, T= (2×22.5×sin36.5°)/9.8
= 2.73 s
Thus, we can conclude that the frog's launch speed and the time spends in the air are 22.5m/s and 2.73s respectively.
Learn more about the range and time period of projectile motion here:
brainly.com/question/24136952
#SPJ1
Forces are exerted I believe : all of the above
The action force might be Tyler throwing the ball
I don't know the last one
Hi there!
We can use the rotational equivalent of Newton's Second Law:

Στ = Net Torque (Nm)
I = Moment of inertia (kgm²)
α = Angular acceleration (rad/sec²)
We can plug in the given values to solve.
