Answer:
<u>So, the way a ratio works is </u><u>"for every 1 of this, we have 4 of this"</u><u> for example. (the ratio I just described would be 1:4.) </u>
<u />
I believe I've seen this question before. If the ratio of dolls to teddy bears is 9:3 then for every 9 dolls you have 3 teddy bears.
So, since we have 240 dolls and a 9:3 ratio to teddy bears, all we have to do is take how many dolls we have (240) and divide it by 3 to see how many teddy bears we have.
So:
240 ÷ 3 = 80
If your ratio is 9:3, then 80 is your answer.
<u>Hope this helps and have a nice day!</u>
<u></u>
A quadratic equation is one in which the highest exponent of x is 2.
![7x^2+14x=0](https://tex.z-dn.net/?f=7x%5E2%2B14x%3D0)
is quadratic; the highest exponent is 2.
x³-3x²+1=0 is NOT quadratic. The highest exponent of x is 3, not 2.
5x-7=0 is NOT quadratic. The highest exponent of x is 1, not 2.
x²+3x-5=0 is quadratic; the highest exponent of x is 2.
x-5=9x+7 is NOT quadratic. The highest exponent of x is 1, not 2.
x²-x=3x+7 is quadratic; the highest exponent of x is 2.
![\bf \qquad \textit{Compounding Continuously Earned Amount}\\\\ A=Pe^{rt}\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\to& \$1740\\ r=rate\to 12\%\to \frac{12}{100}\to &0.12\\ t=years\to &5 \end{cases} \\\\\\ A=1740\cdot e^{0.12\cdot 5}](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Ctextit%7BCompounding%20Continuously%20Earned%20Amount%7D%5C%5C%5C%5C%0AA%3DPe%5E%7Brt%7D%5Cqquad%20%0A%5Cbegin%7Bcases%7D%0AA%3D%5Ctextit%7Baccumulated%20amount%7D%5C%5C%0AP%3D%5Ctextit%7Boriginal%20amount%20deposited%7D%5Cto%26%20%5C%241740%5C%5C%0Ar%3Drate%5Cto%2012%5C%25%5Cto%20%5Cfrac%7B12%7D%7B100%7D%5Cto%20%260.12%5C%5C%0At%3Dyears%5Cto%20%265%0A%5Cend%7Bcases%7D%0A%5C%5C%5C%5C%5C%5C%0AA%3D1740%5Ccdot%20e%5E%7B0.12%5Ccdot%205%7D)
bear in mind that the continuously compounding interest is just that, a daily compounding cycle, taking a year as 365days.
2x-2y
I couldn’t tell if the first figure was a one or a L or i so I solved it as a 1
Answer:
![\displaystyle D) {x}^{5} + \rm C](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20D%29%20%20%7Bx%7D%5E%7B5%7D%20%20%2B%20%20%5Crm%20C)
Step-by-step explanation:
we would like to integrate the following Integral:
![\displaystyle \int 5 {x}^{4} \, dx](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5Cint%205%20%7Bx%7D%5E%7B4%7D%20%5C%2C%20dx%20)
well, to get the constant we can consider the following Integration rule:
![\displaystyle \int c{x} ^{n} \, dx = c\int {x}^{n} \, dx](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5Cint%20c%7Bx%7D%20%5E%7Bn%7D%20%20%5C%2C%20dx%20%20%3D%20%20c%5Cint%20%20%7Bx%7D%5E%7Bn%7D%20%20%5C%2C%20dx)
therefore,
![\displaystyle 5\int {x}^{4} \, dx](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%205%5Cint%20%20%7Bx%7D%5E%7B4%7D%20%5C%2C%20dx%20)
recall exponent integration rule:
![\displaystyle \int {x} ^{n} \, dx = \frac{ {x}^{n + 1} }{n + 1}](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5Cint%20%7Bx%7D%20%5E%7Bn%7D%20%20%5C%2C%20dx%20%20%3D%20%20%5Cfrac%7B%20%7Bx%7D%5E%7Bn%20%2B%201%7D%20%7D%7Bn%20%2B%201%7D%20)
so let,
Thus integrate:
![\displaystyle = 5\left( \frac{ {x}^{4+ 1} }{4 + 1} \right)](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%20%3D%20%205%5Cleft%28%20%5Cfrac%7B%20%7Bx%7D%5E%7B4%2B%201%7D%20%7D%7B4%20%2B%20%201%7D%20%20%5Cright%29)
simplify addition:
![\displaystyle = 5\left( \frac{ {x}^{5} }{5} \right)](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%20%3D%20%205%5Cleft%28%20%5Cfrac%7B%20%7Bx%7D%5E%7B5%7D%20%7D%7B5%7D%20%20%5Cright%29)
reduce fraction:
![\displaystyle = {x}^{5}](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%20%3D%20%20%7Bx%7D%5E%7B5%7D%20)
finally we of course have to add the constant of integration:
![\displaystyle \boxed{ {x}^{5} + \rm C}](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%20%5Cboxed%7B%20%7Bx%7D%5E%7B5%7D%20%20%2B%20%20%5Crm%20C%7D)
hence,
our answer is D)