Answer:
S = V0 t + 1/2 a t^2
S = 5 m/s * 300 s + 1/2 * 1.2 m/s * (300 s^2)
S = 1500 m + .6 * 90000 m = 55,500 m
Check: V0 = 5 m/s
V2 = V0 + a t = 5 + 1.2 * 300 = 365 m/s
Vav = (V1 + V2) / 2 = (5 + 365) / 2 = 185 m/s (note uniform motion)
S = 185 * 300 = 55,500 m
We calculated V2 above at 365 m/s the speed after 300 sec
Answer:
Explanation:
We know that , If the frictional force on a system is zero , then the total energy of a system will be conserved.
By using energy conservation
KE₁ + U₁ = KE₂ + U₂
KE₁=Kinetic energy at location 1
U₁ =Potential energy at location 1
KE₂=Kinetic energy at location 2
U₂=Potential energy at location 2
Therefore, Raymond is thinking in a right way.
Answer: 1.176×10^-3 s
Explanation: The time constant formulae for an RC circuit is given below as
t =RC
Where t = time constant , R = magnitude of resistance = 21 ohms , C = capacitance of capacitor = 56 uf = 56×10^-6 F
t = 56×10^-6 × 21
t = 1176×10^-6
t = 1.176×10^-3 s
The correct answer is A. In the direction of applied force. This is because acceleration occurs n the direction of applied force according to Newtons second law of motion which states that the acceleration of a body is directly proportional to the applied force and takes place in the direction of force.
Answer:

Explanation:
To develop this exercise we proceed to use the kinetic energy equations,
In the end we replace


Here
meaning the 4 wheels,
So replacing

So,



