Answer: The smallest effort = 300N
Explanation:
Using one of the condition for the attainment of equilibrium:
Clockwise moment = anticlockwise moments
900 × 1 = 3 × M
Where M = the weight of the strong man
3M = 900
M = 900/3 = 300N
Therefore, 300N is the smallest effort that the strongman can use to lift the goat
Answer:
see below
Explanation:
First, the obvious, as you press the gas pedal harder the acceleration goes up as well. Conversely, is you do not press the pedal, you will not accelerate. This determines that is I press the gas pedal, it will CAUSE the car to accelerate. This proves causation.
Now, correlation. The definition of correlation in statistics is any statistical relationship between two random variables or data. This simply means that these two events are connected to one another. A POSITIVE correlation is when two correlated events move in the same direction as one another. I have added a graph to help visualize this. In this problem as the gas is pressed harder, the acceleration increases. If the pressure on the pedal was decreased, then the acceleration also decreases. If the pressure on the pedal is constant, the the acceleration is constant.
I hope this helps!
True.
It has been studied in a research study that claims birds have the ability and capability to regenerate their hair cells.
Brainliest please?
Answer:
Potential energy is converted to kinetic energy, which is the energy exerted by a moving object. An active pendulum has the most kinetic energy at the lowest point of its swing when the weight is moving fastest.
Explanation:
Explanation:
It is given that,
Mass of the box, m = 100 kg
Left rope makes an angle of 20 degrees with the vertical, and the right rope makes an angle of 40 degrees.
From the attached figure, the x and y component of forces is given by :






Let
and
is the resultant in x and y direction.


As the system is balanced the net force acting on it is 0. So,
.............(1)
..................(2)
On solving equation (1) and (2) we get:
(tension on the left rope)
(tension on the right rope)
So, the tension on the right rope is 1063.36 N. Hence, this is the required solution.