Answer:
If the radio wave is on an FM station, these are in Megahertz. A megahertz is one ... Typical radio wave frequencies are about 88~108 MHz .
Explanation:
To calculate the wavelength of a radio wave, you will be using the equation: Speed of a wave = wavelength X frequency.
Since radio waves are electromagnetic waves and travel at 2.997 X
10
8
meters/second, then you will need to know the frequency of the radio wave.
If the radio wave is on an FM station, these are in Megahertz. A megahertz is one million hertz. If the radio wave is from an AM radio station, these are in kilohertz (there are one thousand hertz in a kilohertz). Hertz are waves/second. Hertz is usually the label for the frequency of electromagnetic waves.
To conclude, to determine the wavelength of a radio wave, you take the speed and divide it by the frequency.
Typical radio wave frequencies are about
88
~
108
MHz
. The wavelength is thus typically about
3.41
×
10
9
~
2.78
×
10
9
nm
.
To solve the problem it is necessary to apply the concepts related to Byle's Law and Avogadro's Law.
The ideal gas equation would help us find the final solution to the problem, defined by

Where,
T= Temperature of the gas
R = Universal as constant
n = number of moles
V = Volume
P = Pressure
For our case we have that the mass of Zn is 2.2g in moles would be
[/tex]

We know that 1 mole of hydrogen gas is proceed by 1 mole of zinc and the result is
, then Hydrogen can produce the same quantity,

Applying the previous equation we have that



Therefore the volume of hydrogen gas is collected is 0.829L
Correct position spring hold it
Explanation:
Given that,
Current of clothes dryer, I = 16 A
Voltage, V = 240 V
Time, t = 45 min = 2700 s
Current of personal computer, I' = 2.7 A
Voltage, V' = 120 C
Energy used by clothes dryer is given by :

Let t' is the time for this computer to "surf" the internet. Again using formula of energy used as :

So, for 8.83 hours you could use this computer to "surf" the internet.