If you walk at a pace of 2 miles per hour for 5 hours, you should have walked 10 miles. You would be 2 miles away from your base camp.
- Mass of the elevator (m) = 570 Kg
- Acceleration = 1.5 m/s^2
- Distance (s) = 13 m
- Let the force be F.
- We know, F = ma,
- Therefore, F = (570 × 1.5) N = 855 N
- Angle between distance and force (θ) = 0°
- We know, work done = F s Cos θ
- Therefore, work done by the cable during this part
- = (855 × 13 × Cos 0°) J
- = (855 × 13 × 1) J
- = 11115 J
<u>Answer</u><u>:</u>
<u>1</u><u>1</u><u>1</u><u>1</u><u>5</u><u> </u><u>J</u>
Hope you could get an idea from here.
Doubt clarification - use comment section.
Answer:
500ms times 2 would be when the ball reaches the max horizontal distance.
Then to find the angle, use the formula of time to reach max height t = u sin theta / g . With t being the max height time 500ms, u being 10m/s
For initial vertical velocity just use u sin theta.
Answer:
3000 N
Explanation:
<em>Newton's second law of motion</em> describes the relationship between an object's mass and the amount of force needed to accelerate it.
This law can be expresses as F=ma,
where
- F - force acting on an object
- m- the mass of an object
- a - its acceleration
The more mass an object has, the more force you need to accelerate it. And the greater the force, the greater the object's acceleration.
<em>F = ma</em>
<em>F = 1000×3 </em>
<em> = 3000 N</em>