1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirza4 [7]
3 years ago
14

A 6.7kg object moves with a velocity of 8m/s. What's its kinetic energy?

Physics
1 answer:
Snezhnost [94]3 years ago
3 0

Given parameters:

Mass of object = 6.7kg

Velocity  = 8m/s

Unknown parameter:

Kinetic energy  = ?

Energy is defined as the ability to do work. There are two forms of energy;

Kinetic and potential energy.

Kinetic energy is the energy due to the motion of a body. Whereas, potential energy is the energy due to the position of a body usually at rest.

Kinetic energy is mathematically expressed as;

             Kinetic energy  = \frac{1}{2} m v^{2}

where m is the mass of the body

           v is the velocity of the body

Since we have been given both mass and velocity, input the parameter to solve for the unknown;

            Kinetic energy  = \frac{1}{2} x 6.7 x 8²   = 214.4‬J

So the kinetic energy of the body is  214.4‬J

You might be interested in
The amount of the lighted side of the moon you can see is the same during
attashe74 [19]

<u>Answer:</u>

The amount of the lighted side of the moon you can see is the same during "how much of the sunlit side of the moon faces Earth".

<u>Explanation:</u>

The Moon is in sequential rotation with Earth, and thus displays the Sun, the close side, always on the same side. Thanks to libration, Earth can display slightly greater than half (nearly 59 per cent) of the entire lunar surface.

The side of the Moon facing Earth is considered the near side, and the far side is called the reverse. The far side is often referred to as the "dark side" inaccurately but it is actually highlighted as often as the near side: once every 29.5 Earth days. During the New Moon the near side becomes blurred.

5 0
3 years ago
With what force will a car hit a tree if the car has a mass of 3,415 kg and it is accelerating at
weeeeeb [17]

Answer:

F= 17,075\ N

Explanation:

When the car is under an accelerating force and hits a tree, the instant force received by the tree is the same force that is accelerating the car.

The accelerating force can be calculated using Newton's second law:

F=m\cdot a

Where m is the mass of the car and a is the acceleration.

F=3,415\ kg\cdot 5\ m/s^2

\boxed{F= 17,075\ N}

3 0
3 years ago
What force must the deltoid muscle provide to keep the arm in this position?
ruslelena [56]

Answer:

Deltoid Force, F_{d} = \frac {r_{a}mgsin\alpha_{a}}{r_{d}sin\alpha_{d}}

Additional Information:

Some numerical information are missing from the question. However, I will derive the formula to calculate the force of the deltoid muscle. All you need to do is insert the necessary information and calculate.  

Explanation:

The deltoid muscle is the one keeping the hand arm in position. We have two torques that apply to the rotating of the arm.

1. The torque about the point in the shoulder for the deltoid muscle, T_{Deltoid}

2. The torque of the arm, T_{arm}  

Assuming the arm is just being stretched and there is no rotation going on,

                        T_{Deltoid} = 0

                       T_{arm} = 0

       ⇒           T_{Deltoid} = T_{arm}

                  r_{d}F_{d}sin\alpha_{d} = r_{a}F_{a}sin\alpha_{a}

Where,

r_{d} is radius of the deltoid

F_{d} is the force of the deltiod

\alpha_{d} is the angle of the deltiod

r_{a} is the radius of the arm

F_{a} is the force of the arm , F_{a} = mg  which is the mass of the arm and acceleration due to gravity

\alpha_{a} is the angle of the arm

The force of the deltoid muscle is,

                                 F_{d} = \frac {r_{a}F_{a}sin\alpha_{a}}{r_{d}sin\alpha_{d}}

but F_{a} = mg ,

                ∴            F_{d} = \frac {r_{a}mgsin\alpha_{a}}{r_{d}sin\alpha_{d}}

7 0
3 years ago
-What do you think happened to make the Moon look the way it does?
goldenfox [79]

Answer:  The physics of evolution had made the moon like it is today....Please watch this video from you tube about the evolution of the moon.

Explanation:

https://youtu.be/UIKmSQqp8wY

5 0
3 years ago
A 86g ball is dropped vertically to the floor from a height of 2.87m and bounces to a height of 1.28. What is the magnitude of t
irga5000 [103]

Answer:

The impulse received by the ball from the floor during the bounce is approximately 1.11329438 m·kg/s

Explanation:

The given mass of the ball, m = 86 g = 0.089 kg

The height from which the ball is dropped, H = 2.87 m

The height to which the ball bounces, h = 1.28 m

Mathematically, we have;

Δp = F·Δt

Where;

Δp = The change in momentum = m·Δv

F = The applied force

Δt = The time of contact with the force

The velocity of the ball just before it touches the ground, v₁ = -√(2·g·H)

The velocity with which the ball leaves, v₂ = √(2·g·h)

The change in momentum, Δp = m·(v₂ - v₁)

∴ Δp = m·(√(2·g·h) - (-√(2·g·H))) = m·(√(2·g·h) +√(2·g·H) )

The impulse, Δp, received by the ball from the floor during the bounce is given as follows;

Δp = 0.089 kg × (√(2 × 9.8 m/s² × 1.28 m) + √(2 × 9.8 m/s² × 2.87 m)) ≈ 1.11329438 m·kg/s

The impulse received by the ball from the floor during the bounce, Δp ≈ 1.11329438 m·kg/s

6 0
3 years ago
Other questions:
  • Astronomers have observed a small, massive object at the center of our Milky Way Galaxy. A ring of material orbits this massive
    9·1 answer
  • A box with mass (m) it's sliding along on a friction-free surface at 9.87 m/s at a height of 1.81 meters. It travels down the hi
    15·1 answer
  • Why do people bleed .-.
    5·2 answers
  • A car starts out traveling at 35 m/s. The car hits the brakes and decelerates at a rate of 3 m/s^2 for 5 seconds. What Distance
    6·1 answer
  • What is a tsunami? How is it formed?
    15·2 answers
  • A mass hanging from a spring is set in motion and its ensuing velocity is given by v (t )equals 2 pi cosine pi t for tgreater th
    13·1 answer
  • If stretching is done during the cool-down, it can help the muscle _____.
    9·1 answer
  • Like charges will exert a force of
    5·2 answers
  • Why is the sky blue?
    15·2 answers
  • 5. Find the velocity of a train that traveled 75 km in 35 minutes. (answer
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!