Answer:
Even-number fatty acids such as palmitate undergoes complete β-oxidation in the liver motochondria to CO₂ because the product, acetyl-CoA can enter the TCA cycle.
Oxidation of odd-number fatty acids such as undecanoic acid yields acetyl-CoA + propionyl-CoA in their last pass. Propionyl-CoA requires additional reactions including carboxylation in order to be able to enter the TCA cycle.
The reaction CO2 + propionyl-CoA ----> methylmalonyl-CoA is catalyzed by propionyl-CoA carboxylase, a biotin-containing enzyme, which is inhibited by avidin. Palmitate oxidation however, does not involve carboxylation.
Explanation:
Even-number fatty acids such as palmitate undergoes complete β-oxidation in the liver motochondria to CO₂ because their oxidation product, acetyl-CoA, can enter the TCA cycle where it is oxidized to CO₂.
Undecanoic acid is an odd-number fatty acid having 11 carbon atoms. Oxidation of odd-number fatty acids such as undecanoic acid yields a five -carbon fatty acyl substrate for their last pass through β-oxidation which is oxidized and cleaved into acetyl-CoA + propionyl-CoA. Propionyl-CoA requires additional reactions including carboxylation in order to be able to enter the TCA cycle. Since oxidation is occuring in a liver extract, CO₂ has to be externally sourced in order for the carboxylation of propionyl-CoA to proceed and thus resulting in comlete oxidation of undecanoic acid.
The reaction CO2 + propionyl-CoA ----> methylmalonyl-CoA is catalyzed by propionyl-CoA carboxylase, a biotin-containing enzyme. The role of biotin is to activate the CO₂ before its tranfer to the propionate moiety. The addition of the protein avidin prevents the complete oxidation of undecanoic acid by binding tightly to biotin, hence inhibiting the activation and transfer of CO₂ to propionate.
Palmitate oxidation however, does not involve carboxylation, hence addition of avidin has no effect on its oxidation.
A crushed garlic will have a lot of flavor when placed in food due to the surface area that is in contact with the food. When we have a large piece of garlic, only the external part touches the food and its full capacity is not used. When we reduce the size of the year by crushing the internal parts that were not in contact with the food, now they will be, in addition, liquids are also released due to the pressure exerted on the garlic and these liquids mix more easily with the food and they give it more flavor. For better understanding we can see the following figure:
Simply to understand it, in the figure, there is a clove of whole garlic represented by the rectangle that will have a height of 3 and a width of 1, the units do not matter in this case. The area that is in contact will be equal to 8, but if we divide the garlic into three equal parts, it will have a contact area greater than 12. Therefore, the more we divide the garlic, the more area it will be in contact with the food and will give it more flavor.
Answer:
The boiling point is somewhere between 56 and 151 °C
Explanation:
Hello,
In this case, it is possible to compute it via rigorous methods in phase equilibrium by using for example a cubic equation of state to model the vapor phase and a suitable excess Gibbs free energy model for the liquid phase, nonetheless, it is an arduous task. In such a way, since the information about both acetone's and nonane's pure boiling points is given as well as acetone's mole fraction, which points out it is about a binary liquid solution, one could make up the boiling point is somewhere between 56 and 151 °C precising that it should be closer to 151 °C as the mixture is 90% nonane and 10% acetone.
Best regards.
Answer:
The heart and the blood vessels are a part of the circulatory system. The blood vessels include the arteries, veins and capillaries. The lungs are considered to be the pulmonary part of the circulatory system. The heart is the cardiovascular part of the circulatory system and the vessels are the systemic part of the circulatory system. The main function of the circulatory system is to supply all parts of the body with oxygenated blood and to take away the deoxygenated blood from all parts of the body.
Answer:
13
Explanation:
proton plus neutron equal to atomic mass