1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
son4ous [18]
3 years ago
11

A 3.5 Newton force (directed at a 30 degree angle with the vertical) to

Physics
1 answer:
kakasveta [241]3 years ago
3 0

Answer:

8.75J

Explanation:

use formula of work done

You might be interested in
If 20 beats are produce with one second which of the following frequency could possibly be held by two sound waves traveling thr
musickatia [10]

ANY two frequencies whose difference is 20 Hz.

8 0
4 years ago
A. Which of the four thermal processes describes the pressure-volume relationship at a constant temperature?
zhannawk [14.2K]
Boyles law describes pressure volume relationship at constant temperature  pressure is directly proportional  to volume at constant tamparature
4 0
3 years ago
Read 2 more answers
A 100 kg roller coaster comes over the first hill at 2 m/sec (vo). The height of the first hill (h) is 20 meters. See roller dia
aleksandr82 [10.1K]

For the 100 kg roller coaster that comes over the first hill of height 20 meters at 2 m/s, we have:

1) The total energy for the roller coaster at the <u>initial point</u> is 19820 J

2) The potential energy at <u>point A</u> is 19620 J

3) The kinetic energy at <u>point B</u> is 10010 J

4) The potential energy at <u>point C</u> is zero

5) The kinetic energy at <u>point C</u> is 19820 J

6) The velocity of the roller coaster at <u>point C</u> is 19.91 m/s

1) The total energy for the roller coaster at the <u>initial point</u> can be found as follows:

E_{t} = KE_{i} + PE_{i}

Where:

KE: is the kinetic energy = (1/2)mv₀²

m: is the mass of the roller coaster = 100 kg

v₀: is the initial velocity = 2 m/s

PE: is the potential energy = mgh

g: is the acceleration due to gravity = 9.81 m/s²

h: is the height = 20 m

The<em> total energy</em> is:

E_{t} = KE_{i} + PE_{i} = \frac{1}{2}mv_{0}^{2} + mgh = \frac{1}{2}*100 kg*(2 m/s)^{2} + 100 kg*9.81 m/s^{2}*20 m = 19820 J

Hence, the total energy for the roller coaster at the <u>initial point</u> is 19820 J.

   

2) The <em>potential energy</em> at point A is:

PE_{A} = mgh_{A} = 100 kg*9.81 m/s^{2}*20 m = 19620 J

Then, the potential energy at <u>point A</u> is 19620 J.

3) The <em>kinetic energy</em> at point B is the following:

KE_{A} + PE_{A} = KE_{B} + PE_{B}

KE_{B} = KE_{A} + PE_{A} - PE_{B}

Since

KE_{A} + PE_{A} = KE_{i} + PE_{i}

we have:

KE_{B} = KE_{i} + PE_{i} - PE_{B} =  19820 J - mgh_{B} = 19820 J - 100kg*9.81m/s^{2}*10 m = 10010 J

Hence, the kinetic energy at <u>point B</u> is 10010 J.

4) The <em>potential energy</em> at <u>point C</u> is zero because h = 0 meters.

PE_{C} = mgh = 100 kg*9.81 m/s^{2}*0 m = 0 J

5) The <em>kinetic energy</em> of the roller coaster at point C is:

KE_{i} + PE_{i} = KE_{C} + PE_{C}            

KE_{C} = KE_{i} + PE_{i} = 19820 J      

Therefore, the kinetic energy at <u>point C</u> is 19820 J.

6) The <em>velocity</em> of the roller coaster at point C is given by:

KE_{C} = \frac{1}{2}mv_{C}^{2}

v_{C} = \sqrt{\frac{2KE_{C}}{m}} = \sqrt{\frac{2*19820 J}{100 kg}} = 19.91 m/s

Hence, the velocity of the roller coaster at <u>point C</u> is 19.91 m/s.

Read more here:

brainly.com/question/21288807?referrer=searchResults

I hope it helps you!

3 0
3 years ago
A circular loop of wire lies flat on a level table top in a region where the magnetic field vector points straight upward. The m
jarptica [38.1K]
The magnetic field direction and direction of induced current in a wire are related by the right hand grip rule. Since the magnetic field was upwards, the thumb points upwards and the fingers curl around it. When viewed from above, it is seen as a current flowing in the counter clockwise direction.
4 0
3 years ago
005 10.0 points
velikii [3]

Answer:

16.6 N

Explanation:

m = 0.52 kg, v₀ = 0, v = 8.6 m/s, t = 0.27 s

a = (v - v₀)/t

F = ma = m(v - v₀)/t = 0.52 (8.6 - 0)/0.27 = 16.6 N

8 0
2 years ago
Other questions:
  • The charger for your electronic devices is a transformer. Suppose a 60 HzHz outlet voltage of 120 VV needs to be reduced to a de
    15·1 answer
  • To increase the speed at which Google Analytics compiles reports, what action could be taken?
    12·1 answer
  • What do ocean waves and sound waves have in common?
    12·2 answers
  • What is the power involved in lifting a 10-kg object 1.0 m in 0.50 s?
    9·1 answer
  • Describe what is happening at the cascade range?
    6·1 answer
  • Carl knows that water moves through different kinds of soil at different rates. How easily water moves through a soil is known a
    10·1 answer
  • What causes sedimentary rock to change into metamorphic rock
    7·1 answer
  • A dog running at a speed of 12 m/s has 1,080 J of kinetic energy. What is the mass of the dog
    15·1 answer
  • In which case would the kinetic energy of particles be increasing?.
    6·1 answer
  • Imagine that our Sun were magically and suddenly replaced by a black hole of the same mass (1 solar mass). How would Earth's orb
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!