Answer:
k = 45.95 N/m
Explanation:
First, we will find the launch speed of the ball by using the formula for the horizontal range of the projectile.

where,
Vo = Launch Speed = ?
R = Horizontal Range = 5.3 m
θ = Launch Angle = 35°
Therefore,

v₀² = 55.33 m²/s²
Now, we know that the kinetic energy gain of ball is equal to the potential energy stored by spring:

where,
k = spring constant = ?
x = compression = 17 cm = 0.17 m
m = mass of ball = 24 g = 0.024 kg
Therefore,

<u>k = 45.95 N/m</u>
Answer:
The type and length of a lunar eclipse depend on the Moon's proximity to either node of its orbit. ... A total lunar eclipse can last up to nearly 2 hours, while a total solar eclipse lasts only up to a few minutes at any given place, due to the smaller size of the Moon's shadow.
Answer: Rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
Explanation: Terminal velocity is defined as the final velocity attained by an object falling under the gravity. At this moment weight is balanced by the air resistance or drag force and body falls with zero acceleration i.e. with a constant velocity.
Case 1: Terminal velocity of a piece of tissue paper.
The weight of tissue paper is very less and it experiences an air resistance while falling downward under the effect of gravity.
Downward gravitational force, F = mg
Upward air resistance or friction or drag force will be 
So, paper will attain terminal velocity when mg =
Case 2: Rock is very heavy and require larger air resistance to balance the weight of rock relative to the tissue paper case.
Downward force on rock, F = Mg
Drag force =
Rock will attain terminal velocity when Mg =
Mg > mg
so,
>
And rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
The acceleration of Karla's I IPhone being thrown from Mr. Higley's classroom at 0 m/s will be 29.16 m/s²
<h3>What is acceleration?</h3>
The rate of velocity change concerning time is known as acceleration. According to Newton's second law, the eventual effect of all forces applied to a body is its acceleration.
The pace at which a body's velocity varies is represented by acceleration, which is a vector quantity.
The given data in the problem is given by ;
u is the initial speed = 0 m/sec
v is the final speed= 35 m/sec
t is the time interval= 1.2 second
a is the acceleration=? m/sec²
The formula for acceleration is;

Hence, the acceleration of Karla's iPhone being thrown from Mr. Higley's classroom at 0 m/s will be 29.16 m/s²
To learn more about acceleration, refer to the link;
brainly.com/question/2437624#SPJ2
#SPJ1
Answer:
Small sports car.
Explanation:
Lets take
mass of the small car = m
mass of the truck = M
As we know that when car collide with the massive truck then due to change in the moment of the car both car as well as truck will feel force.We also know that from Third law of Newton's ,it states that every action have it reaction with same magnitude but in the opposite direction.
Therefore
F = m a
a=Acceleration of the car

F= M a'
a'=Acceleration of the massive truck

Here given that M > m that is why a > a'
Therefore car will experiences more acceleration.