Temperature is just a measure of how HOT or COLD a substance is, which can be easily defined by a magnitude using a numerical value say “300 K” or “27°C”. Hence we can say it is a scalar quantity.
But the energy which transfer by virtue of a temperature difference is a vector quantity, as it has both magnitude and direction of motion (from High temperature to low temperature region).
In this question force is measured in g cm/s2 so we know that to get the answer we times g by cm/s2
50 × 20 = 1000
Answer:
Explanation:
For entry of light into tube of unknown refractive index
sin ( 90 - 25 ) / sinr = μ , μ is the refractive index of the tube , r is angle of refraction in the medium of tube
r = 90 - C where C is critical angle between μ and body medium in which tube will be inserted.
sin ( 90 - 25 ) / sin( 90 - C) = μ
sin65 / cos C = μ
sinC = 1.33 / μ , where 1.33 is the refractive index of body liquid.
From these equations
sin65 / cos C = 1.33 / sinC
TanC = 1.33 / sin65
TanC = 1.33 / .9063
TanC = 1.4675
C= 56°
sinC = 1.33 / μ
μ = 1.33 / sinC
= 1.33 / sin56
= 1.33 / .829
μ = 1.6 Ans
1. Frequency is the number of complete waves that pass a point in a second. 2.Wavelength is the distance between two crests or two troughs. 3.Time period <span> is the time it takes for one complete wave to pass a given point. 4. Amplitude is the height of the wave. Hence option 4 is correct. </span>