Answer:
A light beam incident on a diffraction grating consists of waves with two different wavelengths. The separation of the two first order lines is great if
the dispersion is great
The equilibrium conditions allow to find the results for the balance forces are:
When the acceleration is zero we have the equilibrium conditions for both linear and rotational motion.
∑ F = 0
∑ τ = 0
Where F are the forces and τ the torques.
The torque is the product of the force and the perpendicular distance to the point of support,
The free-body diagrams are diagrams of the forces without the details of the bodies, see attached for the free-body diagram of the system.
We write the translational equilibrium condition.
F₁ - W₁ - W₂ + F₂ = 0
We write the equation for the rotational motion, set our point of origin at scale 1, and the counterclockwise turns are positive.
F₂ 2 - W₁ 1 - W₂ 1.5 = 0
Let's calculate F₂
F₂ =
F₂ = (m g + M g 1.5)/ 2
F₂ =
F₂ = 558.6 N
We substitute in the translational equilibrium equation.
F₁ = W₁ + W₂ - F₂
F₁ = (m + M) g - F₂
F₁ = (12 +68) 9.8 - 558.6
F₁ = 225.4 N
In conclusion using the equilibrium conditions we can find the forces of the balance are:
Learn more here: brainly.com/question/12830892
These are the correct solutions:
It is 11 a.m. in the Eastern Time Zone; therefore, it is 8 a.m. in the Pacific Time Zone. (3 hrs behind)
It is 3 p.m. in the Central Time Zone; therefore, 2 p.m. in the Mountain Time Zone. (1 hr behind)
It is 6 p.m. in the Pacific Time Zone; therefore, it is 4 p.m in Hawaii. (2 or 3 hours behind depending on time of year)
It is 6 p.m. in Hawaii; therefore, it is 11 p.m. in the Eastern Time Zone (5 or 6 hours behind depending on time of year).
It is 3 p.m. in Hawaii; therefore, it is 6 p.m. in the Mountain Time Zone (3 or 4 hours behind depending on time of year).
<h3>
Answer:</h3>
35 meters
<h3>
Explanation:</h3>
<u>Data given;</u>
- Velocity of an object = 5 m/s
- Time taken = 7 s
We are required to calculate how far the object traveled.
Velocity = Displacement ÷ time
Displacement = Velocity × time
= 5 m/s × 7 s
= 35 m
Therefore; the object traveled 35 meters